Nejvíce citovaný článek - PubMed ID 23762124
Prenylated Flavonoids from Morus alba L. Cause Inhibition of G1/S Transition in THP-1 Human Leukemia Cells and Prevent the Lipopolysaccharide-Induced Inflammatory Response
Background: Oxidative stress is a key factor in the pathophysiology of many diseases. This study aimed to verify the antioxidant activity of selected plant phenolics in cell-based assays and determine their direct or indirect effects. Methods: The cellular antioxidant assay (CAA) assay was employed for direct scavenging assays. In the indirect approach, the influence of each test substance on the gene and protein expression and activity of selected antioxidant enzymes was observed. One assay also dealt with activation of the Nrf2-ARE pathway. The overall effect of each compound was measured using a glucose oxidative stress protection assay. Results: Among the test compounds, acteoside showed the highest direct scavenging activity and no effect on the expression of antioxidant enzymes. It increased only the activity of catalase. Diplacone was less active in direct antioxidant assays but positively affected enzyme expression and catalase activity. Morusin showed no antioxidant activity in the CAA assay. Similarly, pomiferin had only mild antioxidant activity and proved rather cytotoxic. Conclusions: Of the four selected phenolics, only acteoside and diplacone demonstrated antioxidant effects in cell-based assays.
- Klíčová slova
- CAA, Nrf2-ARE, antioxidants, catalase, glucose toxicity, plant phenolics, superoxide dismutase,
- MeSH
- antioxidační responzivní elementy MeSH
- antioxidancia chemie farmakologie MeSH
- biologické markery MeSH
- exprese genu MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- fenoly chemie farmakologie MeSH
- glukosa MeSH
- lidé MeSH
- molekulární struktura MeSH
- oxidační stres MeSH
- protinádorové látky chemie farmakologie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- superoxiddismutasa 1 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- biologické markery MeSH
- faktor 2 související s NF-E2 MeSH
- fenoly MeSH
- glukosa MeSH
- NFE2L2 protein, human MeSH Prohlížeč
- protinádorové látky MeSH
- rostlinné extrakty MeSH
- SOD1 protein, human MeSH Prohlížeč
- superoxiddismutasa 1 MeSH
Morusin is a prenylated flavonoid isolated from the root bark of Morus alba. Many studies have shown the ability of flavonoids to act as anti-inflammatory agents. The aim of this study was to evaluate the effect of morusin on experimentally colitis induced by 2,4,6-trinitrobenzensulfonic acid in Wistar rats and to compare it with sulfasalazine, a drug conventionally used in the treatment of inflammatory bowel disease. Morusin was administered by gavage at doses of 12.5, 25, or 50 mg/kg/day for five days. The colonic tissue was evaluated macroscopically, histologically, and by performing immunodetection and zymographic analysis to determine the levels of antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)], interleukin (IL)-1β, and transforming growth factor (TGF)-β1 and the activities of matrix metalloproteinases (MMP) 2 and 9. The tissue damage scores were significantly reduced with increasing dose of morusin, however efficacy was not demonstrated at the highest dose. At the dose of 12.5 mg/kg, morusin exerted therapeutic effectivity similar to that of sulfasalazine (50 mg/kg). This was associated with significant reduction of TGF-β1 levels and MMP2 and MMP9 activities, and slight reduction of IL-1β. Our results suggest that morusin possesses therapeutic potential for the treatment of chronic inflammatory diseases.
- MeSH
- flavonoidy farmakologie MeSH
- kolitida chemicky indukované enzymologie prevence a kontrola MeSH
- kolon účinky léků enzymologie patologie MeSH
- kyselina trinitrobenzensulfonová MeSH
- matrixová metaloproteinasa 2 metabolismus MeSH
- potkani Wistar MeSH
- prenylace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavonoidy MeSH
- kyselina trinitrobenzensulfonová MeSH
- matrixová metaloproteinasa 2 MeSH
- Mmp2 protein, rat MeSH Prohlížeč
- morusin MeSH Prohlížeč
Aims. In this work we studied cytodifferentiation effects of newly characterized prenyl flavonoid 4'-O-methylkuwanon E (4ME) isolated from white mulberry (Morus alba L.). Main Methods. Cell growth and viability were measured by dye exclusion assay; cell cycle and surface antigen CD11b were monitored by flow cytometry. For the cytodifferentiation of cells the NBT reduction assay was employed. Regulatory proteins were assessed by western blotting. Key Findings. 4ME induced dose-dependent growth inhibition of THP-1 cells, which was not accompanied by toxic effect. Inhibition of cells proliferation caused by 4ME was associated with the accumulation in G1 phase and with downregulation of hyperphosphorylated pRb. Treatment with 4ME led to significant induction of NBT-reducing activity of PMA stimulated THP-1 cells and upregulation expression of differentiation-associated surface antigen CD11b. Our results suggest that monocytic differentiation induced by 4ME is connected with up-regulation of p38 kinase activity. Significance. Our study provides the first evidence that 4ME induces the differentiation of THP-1 human monocytic leukemia cells and thus is a potential cytodifferentiating anticancer agent.
- Publikační typ
- časopisecké články MeSH