Nejvíce citovaný článek - PubMed ID 23884429
Cytosine-rich DNA regions can form four-stranded structures based on hemi-protonated C.C+ pairs, called i-motifs (iMs). Using CD, UV absorption, NMR spectroscopy, and DSC calorimetry, we show that model (CnT3)3Cn (Cn) sequences adopt iM under neutral or slightly alkaline conditions for n > 3. However, the iMs are formed with long-lasting kinetics under these conditions and melt with significant hysteresis. Sequences with n > 6 melt in two or more separate steps, indicating the presence of different iM species, the proportion of which is dependent on temperature and incubation time. At ambient temperature, kinetically favored iMs of low stability are formed, most likely consisting of short C.C+ blocks. These species act as kinetic traps and prevent the assembly of thermodynamically favored, fully C.C+ paired iMs. A higher temperature is necessary to unfold the kinetic forms and enable their substitution by a slowly developing thermodynamic structure. This complicated kinetic partitioning process considerably slows down iM folding, making it much slower than the timeframes of biological reactions and, therefore, unlikely to have any biological relevance. Our data suggest kinetically driven iM species as more likely to be biologically relevant than thermodynamically most stable iM forms.
- MeSH
- DNA * genetika chemie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konformace nukleové kyseliny MeSH
- nukleotidové motivy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
A 153-mer target DNA was amplified using ethynyl ferrocene dATP and a tailed forward primer resulting in a duplex with a single-stranded DNA tail for hybridization to a surface-tethered probe. A thiolated probe containing the sequence complementary to the tail as well as a 15 polythimine vertical spacer with a (CH2)6 spacer was immobilized on the surface of a gold electrode and hybridized to the ferrocene-modified complementary strand. Potential step chronoamperometry and cyclic voltammetry were used to probe the potential of zero charge, PZC, and the rate of heterogeneous electron transfer between the electrode and the immobilized ferrocene moieties. Chronoamperometry gives three, well-resolved exponential current-time decays corresponding to ferrocene centers located within 13 Å (4 bases) along the duplex. Significantly, the apparent standard heterogeneous electron transfer rate constant, kappo, observed depends on the initial potential, i.e., the rate of electron transfer at zero driving force is not the same for oxidation and reduction of the ferrocene labels. Moreover, the presence of ions, such as Sr2+, that strongly ion pair with the negatively charged DNA backbone modulates the electron transfer rate significantly. Specifically, kappo = 246 ± 23.5 and 14 ± 1.2 s-1 for reduction and oxidation, respectively, where the Sr2+ concentration is 10 mM, but the corresponding values in 1 M Sr2+ are 8 ± 0.8 and 150 ± 12 s-1. While other factors may be involved, these results are consistent with a model in which a low Sr2+ concentration and an initial potential that is negative of the PZC lead to electrostatic repulsion of the negatively charged DNA backbone and the negatively charged electrode. This leads to the DNA adopting an extended configuration (concertina open), resulting in a slow rate of heterogeneous electron transfer. In contrast, for ferrocene reduction, the initial potential is positive of PZC and the negatively charged DNA is electrostatically attracted to the electrode (concertina closed), giving a shorter electron transfer distance and a higher rate of heterogeneous electron transfer. When the Sr2+ concentration is high, the charge on the DNA backbone is compensated by the electrolyte and the charge on the electrode dominates the electron transfer dynamics and the opposite potential dependence is observed. These results open up the possibility of electromechanical switching using DNA superstructures.
- MeSH
- DNA * genetika MeSH
- elektrody MeSH
- elektrony * MeSH
- metaloceny MeSH
- statická elektřina MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
- metaloceny MeSH
The formation of intercalated motifs (iMs) - secondary DNA structures based on hemiprotonated C.C+ pairs in suitable cytosine-rich DNA sequences, is reflected by typical changes in CD and UV absorption spectra. By means of spectroscopic methods, electrophoresis, chemical modifications and other procedures, we characterized iM formation and stability in sequences with different cytosine block lengths interrupted by various numbers and types of nucleotides. Particular attention was paid to the formation of iMs at pH conditions close to neutral. We identified the optimal conditions and minimal requirements for iM formation in DNA sequences, and addressed gaps and inaccurate data interpretations in existing studies to specify principles of iM formation and modes of their folding.
- MeSH
- cytosin chemie metabolismus MeSH
- DNA chemie metabolismus MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konformace nukleové kyseliny * MeSH
- nukleotidové motivy * MeSH
- párování bází MeSH
- sekvence nukleotidů MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytosin MeSH
- DNA MeSH