Most cited article - PubMed ID 23996490
A systematic method for analysing the protein hydration structure of T4 lysozyme
Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon-donor hydrogen bonds, OH-π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.
- Keywords
- X-ray crystallography, protein hydration, structural biology,
- MeSH
- Amino Acids analysis MeSH
- Databases, Protein MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Proteins chemistry MeSH
- Protein Structure, Secondary MeSH
- Water analysis MeSH
- Hydrogen Bonding MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amino Acids MeSH
- Proteins MeSH
- Water MeSH