Nejvíce citovaný článek - PubMed ID 24233833
Cuticular hydrocarbons (CHCs) have, in insects, important physiological and ecological functions, such as protection against desiccation and as semiochemicals in social taxa, including termites. CHCs are, in termites, known to vary qualitatively and/or quantitatively among species, populations, castes, or seasons. Changes to hydrocarbon profile composition have been linked to varying degrees of aggression between termite colonies, although the variability of results among studies suggests that additional factors might have been involved. One source of such variability may be colony age, as termite colony demographics significantly change over time, with different caste and instar compositions throughout the life of the colony. We here hypothesize that the intracolonial chemical profile heterogeneity would be high in incipient termite colonies but would homogenize over time as a colony ages and accumulates older workers in improved homeostatic conditions. We studied caste-specific patterns of CHC profiles in Coptotermes gestroi colonies of four different age classes (6, 18, 30, and 42 months). The CHC profiles were variable among castes in the youngest colonies, but progressively converged toward a colony-wide homogenized chemical profile. Young colonies had a less-defined CHC identity, which implies a potentially high acceptance threshold for non-nestmates conspecifics in young colonies. Our results also suggest that there was no selective pressure for an early-defined colony CHC profile to evolve in termites, potentially allowing an incipient colony to merge nonagonistically with another conspecific incipient colony, with both colonies indirectly and passively avoiding mutual destruction as a result.
- Klíčová slova
- Coptotermes gestroi, chemical ecology, colony fusion, recognition, social insects,
- Publikační typ
- časopisecké články MeSH
Insect cuticular hydrocarbons (CHCs) were probed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry with a lithium 2,5-dihydroxybenzoate matrix. CHC profiles were obtained for 12 species of diverse insect taxa (termites, ants, a cockroach, and a flesh fly). MALDI spectra revealed the presence of high molecular weight CHCs on the insect cuticle. Hydrocarbons with more than 70 carbon atoms, both saturated and unsaturated, were detected. When compared with gas chromatography/mass spectrometry (GC/MS), MALDI-TOF covered a wider range of CHCs and enabled CHCs of considerably higher molecular weight to be detected. Good congruity between GC/MS and MALDI-TOF was observed in the overlapping region of molecular weights. Moreover, a number of previously undiscovered hydrocarbons were detected in the high mass range beyond the analytical capabilities of current GC/MS instruments. MALDI was shown to hold potential to become an alternative analytical method for insect CHC analyses. The ability of MALDI to discriminate among species varying in the degree of their relatedness was found to be similar to GC/MS. However, neither MALDI-MS nor GC/MS data were able to describe the phylogenetic relationships.
- MeSH
- chloroform chemie MeSH
- hmyz fyziologie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- uhlovodíky analýza metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chloroform MeSH
- uhlovodíky MeSH