Nejvíce citovaný článek - PubMed ID 24429156
Rationale: Idiopathic pulmonary fibrosis (IPF) is a rare, irreversible, and progressive disease of the lungs. Common genetic variants, in addition to nongenetic factors, have been consistently associated with IPF. Rare variants identified by candidate gene, family-based, and exome studies have also been reported to associate with IPF. However, the extent to which rare variants, genome-wide, may contribute to the risk of IPF remains unknown. Objectives: We used whole-genome sequencing to investigate the role of rare variants, genome-wide, on IPF risk. Methods: As part of the Trans-Omics for Precision Medicine Program, we sequenced 2,180 cases of IPF. Association testing focused on the aggregated effect of rare variants (minor allele frequency ⩽0.01) within genes or regions. We also identified individual rare variants that are influential within genes and estimated the heritability of IPF on the basis of rare and common variants. Measurements and Main Results: Rare variants in both TERT and RTEL1 were significantly associated with IPF. A single rare variant in each of the TERT and RTEL1 genes was found to consistently influence the aggregated test statistics. There was no significant evidence of association with other previously reported rare variants. The SNP heritability of IPF was estimated to be 32% (SE = 3%). Conclusions: Rare variants within the TERT and RTEL1 genes and well-established common variants have the largest contribution to IPF risk overall. Efforts in risk profiling or the development of therapies for IPF that focus on TERT, RTEL1, common variants, and environmental risk factors are likely to have the largest impact on this complex disease.
- Klíčová slova
- TOPMed, genetic association studies, interstitial lung disease, telomerase, whole-genome sequencing,
- MeSH
- exom MeSH
- idiopatická plicní fibróza * genetika MeSH
- lidé MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
A genetic predisposition has been identified in 30% of idiopathic pulmonary fibrosis (IPF) cases. Although it is highly probable that the genotype affects the disease susceptibility and course in almost all patients, the specific genotype goes undetected. The aim of the present study was to explore the effects of variants of the genes encoding interleukin-4 (IL-4), mucin 5B (MUC5B), toll interacting protein (TOLLIP), surfactant protein A (SFPTA), transforming growth factor-β (TGF-β) and transporters associated with antigen processing (TAP1 and TAP2) on the course of IPF. A total of 50 patients with IPF were enrolled, and variants of these genes were assessed. Lung function at the time of diagnosis and after 6, 12 and 18 months, and the number of acute exacerbations and deaths in each observation period were measured. ANOVA was used to test the association between gene polymorphisms and the decrease in lung function. There was no significant effect of the gene polymorphisms on the outcomes of patients up to 6 months during the observation period. After 12 months, an effect of an IL-4 single nucleotide polymorphism (SNP) (rs 2070874) on patient outcomes was observed [relative risk (RR) for T allele: 5.6; 95% confidence interval (CI), 0.79-39.0; P=0.053]. The RR of progression in patients with the IL-4 SNP (rs 2243250) and the CT and TT genotypes was 4.3 (95% CI, 1.1-17.5; P=0.046). A total of 18 months after the diagnosis of IPF, an effect of the TOLLIP polymorphism on patient outcome was detected (rs 111521887; risk allele GC; RR: 7.2; 95% CI, 0.97-53.6; P=0.052). Thus, IL-4 and TOLLIP gene polymorphisms may represent disease course-modifying factors, but not drivers of IPF.
- Klíčová slova
- gene variants, idiopathic pulmonary fibrosis, interleukin 4, toll interacting protein,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The antifibrotic drugs nintedanib and pirfenidone are used for the treatment of idiopathic pulmonary fibrosis (IPF). We analysed the association of common profibrotic polymorphisms in MUC5B (mucin 5B, rs35705950) and DSP (desmoplakin, rs2076295) on antifibrotic treatment outcomes in IPF. METHODS: MUC5B rs35705950 and DSP rs2076295 were assessed in IPF patients (n = 210, 139 men/71 women) from the Czech EMPIRE registry and age- or sex-matched healthy individuals (n = 205, 125 men/80 women). Genetic data were collated with overall survival (OS), acute exacerbation episodes, worsening lung function and antifibrotic treatment. RESULTS: We confirmed overexpression of the MUC5B rs35705950*T allele (55.2% versus 20.9%, p < 0.001) and the DSP rs2076295*G allele (80.4% versus 68.3%, p < 0.001) in IPF compared with controls. On antifibrotic drugs, lower mortability was observed in IPF patients with DSP G* allele (p = 0.016) and MUC5B T* allele (p = 0.079). Carriers of the DSP rs2076295*G allele benefitted from nintedanib treatment compared with TT genotype by a longer OS [hazard ratio (HR) = 7.99; 95% confidence interval (CI) = 1.56-40.90; p = 0.013] and a slower decline in lung function (HR = 8.51; 95% CI = 1.68-43.14; p = 0.010). Patients with a TT genotype (rs2076295) benefitted from treatment with pirfenidone by prolonged OS (p = 0.040; HR = 0.35; 95% CI = 0.13-0.95) compared with nintedanib treatment. Both associations were confirmed by cross-validation analysis. After stratifying by MUC5B rs35705950*T allele carriage, no difference in treatment outcome was observed for nintedanib or pirfenidone (p = 0.784). In the multivariate model, smoking, age, forced vital capacity (FVC) and DLCO (diffuse lung capacity) at the IPF diagnosis were associated with survival. CONCLUSION: Our real-world study showed that IPF patients with MUC5B T* allele or DSP G* allele profit from antifibrotic treatment by lower mortability. Moreover, carriers of the DSP rs2076295*G allele benefit from treatment with nintedanib, and TT genotype from treatment with pirfenidone. MUC5B rs35705950 did not impact the outcome of treatment with either nintedanib or pirfenidone. Our single-registry pilot study should be confirmed with an independent patient cohort.
- Klíčová slova
- IPF, antifibrotic treatment, desmoplakin, mucin 5, single nucleotide polymorphisms,
- MeSH
- desmoplakiny * genetika MeSH
- idiopatická plicní fibróza * farmakoterapie genetika MeSH
- indoly * terapeutické užití MeSH
- lidé MeSH
- mutace MeSH
- pilotní projekty MeSH
- pyridony * terapeutické užití MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- desmoplakiny * MeSH
- indoly * MeSH
- nintedanib MeSH Prohlížeč
- pirfenidone MeSH Prohlížeč
- pyridony * MeSH
Rationale: Several common and rare genetic variants have been associated with idiopathic pulmonary fibrosis, a progressive fibrotic condition that is localized to the lung. Objectives: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. Methods: We performed deep targeted resequencing (3.69 Mb of DNA) in cases (n = 3,624) and control subjects (n = 4,442) across genes and regions previously associated with disease. We tested for associations between disease and 1) individual common variants via logistic regression and 2) groups of rare variants via sequence kernel association tests. Measurements and Main Results: Statistically significant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant rs35705950, with an odds ratio of 5.45 (95% confidence interval, 4.91-6.06) for one copy of the risk allele and 18.68 (95% confidence interval, 13.34-26.17) for two copies of the risk allele (P = 9.60 × 10-295). In addition to identifying for the first time that rare variation in FAM13A is associated with disease, we confirmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF, and found that the FAM13A and TERT regions have independent common and rare variant signals. Conclusions: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fibrosis in each of the resequencing regions, and these genetic variants focus on biological mechanisms of host defense and cell senescence.
- Klíčová slova
- disease risk alleles, genetic variants, idiopathic pulmonary fibrosis, rare variants, targeted resequencing,
- MeSH
- ABC transportéry genetika MeSH
- celogenomová asociační studie MeSH
- DNA-helikasy genetika MeSH
- exoribonukleasy genetika MeSH
- genetická predispozice k nemoci MeSH
- genetická variace MeSH
- idiopatická plicní fibróza genetika MeSH
- interakce hostitele a patogenu genetika MeSH
- lidé MeSH
- logistické modely MeSH
- mucin 5B genetika MeSH
- promotorové oblasti (genetika) genetika MeSH
- protein A asociovaný s plicním surfaktantem genetika MeSH
- protein C asociovaný s plicním surfaktantem genetika MeSH
- proteiny aktivující GTPasu genetika MeSH
- proteiny vázající telomery genetika MeSH
- RNA genetika MeSH
- sekvenční analýza DNA MeSH
- stárnutí buněk genetika MeSH
- studie případů a kontrol MeSH
- telomerasa genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ABC transportéry MeSH
- ABCA3 protein, human MeSH Prohlížeč
- DNA-helikasy MeSH
- exoribonukleasy MeSH
- FAM13A protein, human MeSH Prohlížeč
- MUC5B protein, human MeSH Prohlížeč
- mucin 5B MeSH
- poly(A)-specific ribonuclease MeSH Prohlížeč
- protein A asociovaný s plicním surfaktantem MeSH
- protein C asociovaný s plicním surfaktantem MeSH
- proteiny aktivující GTPasu MeSH
- proteiny vázající telomery MeSH
- RNA MeSH
- RTEL1 protein, human MeSH Prohlížeč
- SFTPA2 protein, human MeSH Prohlížeč
- SFTPC protein, human MeSH Prohlížeč
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
- TERT protein, human MeSH Prohlížeč
- TINF2 protein, human MeSH Prohlížeč
A proportion of patients with certain types of interstitial lung disease (ILD), including chronic hypersensitivity pneumonitis and ILDs associated with autoimmune diseases, develop a progressive fibrosing phenotype that shows similarities in clinical course to idiopathic pulmonary fibrosis. Irrespective of the clinical diagnosis, these progressive fibrosing ILDs show commonalities in the underlying pathogenetic mechanisms that drive a self-sustaining process of pulmonary fibrosis. The natural history of progressive fibrosing ILDs is characterized by decline in lung function, worsening of symptoms and health-related quality of life, and early mortality. Greater impairment in forced vital capacity or diffusion capacity of the lungs for carbon monoxide, and a greater extent of fibrotic changes on a computed tomography scan, are predictors of mortality in patients with fibrosing ILDs. However, the course of these diseases is heterogenous and cannot accurately be predicted for an individual patient. Data from ongoing clinical trials and patient registries will provide a better understanding of the clinical course and impact of progressive fibrosing ILDs.
- Klíčová slova
- Connective tissue diseases, Mortality, Pulmonary fibrosis, Rheumatic diseases, Systemic sclerosis, Vital capacity,
- MeSH
- hypersenzitivní pneumonitida diagnostické zobrazování epidemiologie MeSH
- idiopatická plicní fibróza diagnostické zobrazování epidemiologie MeSH
- intersticiální plicní nemoci diagnostické zobrazování epidemiologie MeSH
- lidé MeSH
- mortalita trendy MeSH
- progrese nemoci * MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Klíčová slova
- Czech normal population, MUC5B, association study, cytokines, idiopathic pulmonary fibrosis, sequenom MassARRAY, single nucleotide polymorphism, susceptibility,
- Publikační typ
- časopisecké články MeSH