Most cited article - PubMed ID 25038568
Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging. Despite their significance, the atomic-level folding mechanisms of rG4s remain poorly understood due to their complexity. We studied the folding of the r(GGGA)3GGG and r(GGGUUA)3GGG (TERRA) sequences into parallel-stranded rG4 using all-atom enhanced-sampling molecular dynamics simulations, applying well-tempered metadynamics coupled with solute tempering. The obtained folding pathways suggest that RNA initially adopts a compacted coil-like ensemble characterized by dynamic guanine stacking and pairing. The three-quartet rG4 gradually forms from this compacted coil ensemble via diverse routes involving strand rearrangements and guanine incorporations. While the folding mechanism is multipathway, various two-quartet rG4 structures appear to be a common transitory ensemble along most routes. Thus, the process seems more complex than previously predicted, as G-hairpins or G-triplexes do not act as distinct intermediates, even though some are occasionally sampled. We also discuss the challenges of applying enhanced sampling methodologies to such a multidimensional free-energy surface and address the force-field limitations.
- MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry MeSH
- Nucleic Acid Conformation MeSH
- RNA * chemistry MeSH
- RNA Folding MeSH
- Molecular Dynamics Simulation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Guanine MeSH
- RNA * MeSH
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
- Keywords
- DNA quadruplex, computational folding, enhanced sampling, kinetic partitioning mechanism, metadynamics, molecular dynamics, nudged elastic band, pathCV, transition path sampling,
- MeSH
- DNA chemistry MeSH
- G-Quadruplexes * MeSH
- Nucleic Acid Conformation MeSH
- Molecular Dynamics Simulation MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA MeSH
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
- MeSH
- G-Quadruplexes * MeSH
- Guanine * chemistry MeSH
- Humans MeSH
- Mechanical Phenomena MeSH
- Molecular Dynamics Simulation MeSH
- Telomere MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Guanine * MeSH
Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-living G4 folds. The role of other intermediate species such as parallel G-triplexes and G-hairpins in the folding process has been a matter of debate. Here, we use standard and enhanced-sampling molecular dynamics simulations (total length of ∼0.9 ms) to study these potential folding intermediates. We suggest that parallel G-triplex per se is rather an unstable species that is in local equilibrium with a broad ensemble of triplex-like structures. The equilibrium is shifted to well-structured G-triplex by stacked aromatic ligand and to a lesser extent by flanking duplexes or nucleotides. Next, we study propeller loop formation in GGGAGGGAGGG, GGGAGGG and GGGTTAGGG sequences. We identify multiple folding pathways from different unfolded and misfolded structures leading towards an ensemble of intermediates called cross-like structures (cross-hairpins), thus providing atomistic level of description of the single-molecule folding events. In summary, the parallel G-triplex is a possible, but not mandatory short-living (transitory) intermediate in the folding of parallel-stranded G4.
- MeSH
- DNA chemistry genetics metabolism MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry metabolism MeSH
- DNA, Single-Stranded chemistry genetics metabolism MeSH
- Kinetics MeSH
- Nucleic Acid Conformation * MeSH
- Humans MeSH
- Base Sequence MeSH
- Molecular Dynamics Simulation * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Guanine MeSH
- DNA, Single-Stranded MeSH
We have carried out an extended set of standard and enhanced-sampling MD simulations (for a cumulative simulation time of 620 μs) with the aim to study folding landscapes of the rGGGUUAGGG and rGGGAGGG parallel G-hairpins (PH) with propeller loop. We identify folding and unfolding pathways of the PH, which is bridged with the unfolded state via an ensemble of cross-like structures (CS) possessing mutually tilted or perpendicular G-strands interacting via guanine-guanine H-bonding. The oligonucleotides reach the PH conformation from the unfolded state via a conformational diffusion through the folding landscape, i.e. as a series of rearrangements of the H-bond interactions starting from compacted anti-parallel hairpin-like structures. Although isolated PHs do not appear to be thermodynamically stable we suggest that CS and PH-types of structures are sufficiently populated during RNA guanine quadruplex (GQ) folding within the context of complete GQ-forming sequences. These structures may participate in compact coil-like ensembles that involve all four G-strands and already some bound ions. Such ensembles can then rearrange into the fully folded parallel GQs via conformational diffusion. We propose that the basic atomistic folding mechanism of propeller loops suggested in this work may be common for their formation in RNA and DNA GQs.
- MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry metabolism MeSH
- Kinetics MeSH
- RNA chemistry metabolism MeSH
- RNA Folding * MeSH
- Base Sequence MeSH
- Molecular Dynamics Simulation MeSH
- Thermodynamics MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Guanine MeSH
- RNA MeSH
DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 μs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-μs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.
- MeSH
- DNA chemistry MeSH
- G-Quadruplexes * MeSH
- Cations chemistry MeSH
- Humans MeSH
- Oxytricha genetics MeSH
- Molecular Dynamics Simulation * MeSH
- Telomere chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Cations MeSH
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.
- MeSH
- Nucleic Acid Denaturation MeSH
- Potassium chemistry MeSH
- G-Quadruplexes * MeSH
- Cations MeSH
- Base Pairing MeSH
- Promoter Regions, Genetic * MeSH
- Proto-Oncogene Proteins c-kit genetics MeSH
- Molecular Dynamics Simulation MeSH
- Sodium chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Potassium MeSH
- Cations MeSH
- Proto-Oncogene Proteins c-kit MeSH
- Sodium MeSH