Most cited article - PubMed ID 25430038
Echinostoma 'revolutum' (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe
The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. The number of echinostome species in different hosts did not vary greatly and ranged from one to three species. Of these 14 trematode species, we discovered four species (Echinoparyphium sp. 1, Echinoparyphium sp. 2, Neopetasiger sp. 5, and Echinostomatidae gen. sp.) as novel in Europe; we provide descriptions for the newly recorded species and those not previously associated with DNA sequences. Two species from Iceland (Neopetasiger islandicus and Echinoparyphium sp. 2) were recorded in both Iceland and North America. All species found in Ireland are new records for this country. Via an integrative taxonomic approach taken, both morphological and molecular data are provided for comparison with future studies to elucidate many of the unknown parasite life cycles and transmission routes. Our reports of species distributions spanning Europe and North America highlight the need for parasite biodiversity assessments across large geographical areas.
TITLE: Diversité des Échinostomes (Digenea, Echinostomatidae) chez leurs hôtes mollusques aux latitudes élevées. ABSTRACT: La biodiversité des écosystèmes d’eau douce à l’échelle mondiale laisse encore beaucoup à découvrir, notamment dans la faune parasitaire des trématodes qu’ils abritent. Les parasites trématodes Échinostomes ont des cycles de vie complexes à hôtes multiples impliquant souvent des oiseaux migrateurs comme hôtes définitifs, conduisant ainsi à des distributions étendues. Ici, nous avons examiné la diversité des échinostomes dans les écosystèmes d’eau douce à des latitudes élevées en Islande, Finlande, Irlande et en Alaska (États-Unis). Nous rapportons de séquences de nad1 et d’ADNr 28S morphologiquement et moléculairement à partir d’analyses de données de séquence d’ADNr nad1 et 28S. Nous avons trouvé des échinostomes parasitant les mollusques de 11 espèces des familles Lymnaeidae, Planorbidae, Physidae et Valvatidae. Le nombre d’espèces d’échinostomes dans différents hôtes ne variait pas beaucoup et allait d’une à trois espèces. Sur ces 14 espèces de trématodes, nous avons découvert quatre espèces (Echinoparyphium sp. 1, Echinoparyphium sp. 2, Neopetasiger sp. 5, Echinostomatidae gen. sp.) comme nouvelles pour l’Europe; nous fournissons des descriptions pour les espèces nouvellement signalées et celles qui n’étaient pas précédemment associées à des séquences d’ADN. Deux espèces d’Islande (Neopetasiger islandicus et Echinoparyphium sp. 2) ont été signalées en Islande et en Amérique du Nord. Toutes les espèces trouvées en Irlande sont de nouveaux signalements pour ce pays. Grâce à une approche taxonomique intégrative, des données morphologiques et moléculaires sont fournies à des fins de comparaison avec des études futures afin d’élucider les nombreux cycles de vie et voies de transmission des parasites, qui sont inconnus. Nos données sur la répartition des espèces en Europe et en Amérique du Nord soulignent la nécessité d’évaluer la biodiversité des parasites dans de vastes zones géographiques.
- Keywords
- Europe, Mitochondrial and nuclear DNA, Mollusca, Morphology, North America, Trematoda,
- MeSH
- Echinostomatidae * genetics MeSH
- Ecosystem MeSH
- Snails MeSH
- Humans MeSH
- Trematoda * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- North America MeSH
In contrast to the well-studied trematode fauna of lymnaeid snails, only little is known about the role of small planorbid snails as first intermediate hosts for trematodes in temperate freshwater systems. This study aims at closing this gap by assessing the diversity and composition of larval trematode communities in Gyraulus albus and Segmentina nitida in a Central European reservoir system, and by providing an updated comprehensive review of the published trematode records of these snail hosts. A total of 3691 planorbid snails (3270 G. albus; 421 S. nitida) was collected in three consecutive years from four reservoirs of the River Ruhr catchment area in Germany. Gyraulus albus showed a higher overall trematode prevalence (11.7%) and more diverse trematode fauna (12 species) compared to S. nitida, which harboured three species and showed a lower trematode prevalence (1.7%). Altogether, 13 trematode species belonging to four families were identified in both hosts. Seven trematode species encountered in this study represent novel records for these hosts, and/or constitute first records of these larval stages from Germany. Trematode component communities in G. albus were stable across seasons and years, indicating excellent conditions for trematodes in this snail host and the continuous presence of the final hosts of the most dominant trematode species. Overall, this study reveals the importance of small planorbid snails, in particular G. albus, as first intermediate hosts for a species-rich trematode fauna in European freshwater systems, and highlights the parasites' contribution to the ecosystem's biodiversity.
- Keywords
- Community composition, Digenea, Europe, Parasite diversity, Planorbidae, Reservoir,
- MeSH
- Biodiversity * MeSH
- Ecosystem MeSH
- Snails parasitology MeSH
- Trematode Infections parasitology veterinary MeSH
- Larva MeSH
- Rivers MeSH
- Seasons MeSH
- Fresh Water MeSH
- Trematoda physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Germany epidemiology MeSH
Morphological and molecular characterisation of echinostome specimens (Digenea: Echinostomatidae) recovered in one Anas platyrhynchos L. and one Cygnus atratus (Latham) (Anseriformes: Anatidae) from New Zealand revealed the presence of two known species, Echinostoma miyagawai Ishii, 1932 and Echinoparyphium ellisi (Johnston & Simpson, 1944) and two species new to science. Comparative morphological and phylogenetic analyses supported the distinct species status of Echinostoma novaezealandense n. sp. ex Branta canadensis (L.), A. platyrhynchos and C. atratus, and Echinoparyphium poulini n. sp. ex C. atratus. Echinostoma novaezealandense n. sp., a species of the "revolutum" species complex characterised by the possession of a head collar armed with 37 spines, keyed down to E. revolutum but was distinguished from the latter in having a much narrower body with almost parallel margins, longer oesophagus, wider cirrus-sac, larger seminal vesicle, much smaller ventral sucker, ovary, Mehlis' gland and testes, more anteriorly located ovary and testes, and distinctly smaller eggs (81-87 × 42-53 vs 106-136 × 55-70 µm). This new species appears similar to Echinostoma acuticauda Nicoll, 1914 described in Australia but differs in having a longer forebody, more posteriorly located ovary and testes, and much smaller eggs (81-87 × 42-53 vs 112-126 × 63-75 µm). Echinoparyphium poulini n. sp. is differentiated from the four species of Echinoparyphium possessing 37 collar spines considered valid as follows: from E. chinensis Ku, Li & Chu, 1964 in having a much smaller body, four (vs five) angle spines and simple seminal vesicle (vs bipartite); from E. schulzi Matevosyan, 1951 in having a less robust body at a comparable body length, much smaller ventral sucker, ovary and testes, and longer but narrower eggs (87-109 × 50-59 vs 70-85 × 60-84 µm); and from the two smaller forms, E. serratum Howell, 1968 and E. aconiatum Dietz, 1909, in a number of additional metrical features correlated with body size and especially in the possession of much larger collar spines. Partial fragments of the mitochondrial nad1 and 28S rRNA genes were amplified for representative isolates of the four species and analysed together with sequences for Echinostoma spp. and Echinoparyphium spp. available on GenBank. Phylogenetic analyses based on the mitochondrial nad1 gene revealed congruence between the molecular data and species identification/delineation based on morphology; this was corroborated by the 28S rDNA sequence data.
- MeSH
- Species Specificity MeSH
- Echinostoma classification genetics MeSH
- Echinostomatidae classification genetics MeSH
- Phylogeny MeSH
- NADH Dehydrogenase genetics MeSH
- Birds parasitology MeSH
- RNA, Ribosomal, 28S genetics MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- New Zealand MeSH
- Names of Substances
- NADH Dehydrogenase MeSH
- RNA, Ribosomal, 28S MeSH
Metacercariae of two species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) were subjected to morphological and molecular studies: P. brevicaudatum (von Nordmann, 1832) from Gasterosteus aculeatus (L.) (Gasterosteiformes: Gasterosteidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Perca fluviatilis L. (Perciformes: Percidae), Czech Republic (morphology, cox1, ITS1-5.8S-ITS2 and 28S); and P. centrarchi Hoffman, 1958 from Lepomis gibbosus (L.) (Perciformes: Centrarchidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Slovakia (cox1 and ITS1-5.8S-ITS2). In addition, cercariae of P. cuticola (von Nordmann, 1832) from Planorbis planorbis (L.) (Mollusca: Planorbidae), Lithuania (morphology and cox1) and metacercariae of Ornithodiplostomum scardinii (Schulman in Dubinin, 1952) from Scardinius erythrophthalmus (L.) (Cypriniformes: Cyprinidae), Czech Republic, were examined (morphology, cox1, ITS1-5.8S-ITS2 and 28S). These represent the first molecular data for species of Posthodiplostomum and Ornithodiplostomum Dubois, 1936 from the Palaearctic. Phylogenetic analyses based on cox1 and ITS1-5.8S-ITS2, using O. scardinii as the outgroup and including the three newly-sequenced Posthodiplostomum spp. from Europe and eight published unidentified (presumably species-level) lineages of Posthodiplostomum from Canada confirmed the distinct status of the three European species (contrary to the generally accepted opinion that only P. brevicaudatum and P. cuticola occur in the Palaearctic). The subspecies Posthodiplostomum minimum centrarchi Hoffmann, 1958, originally described from North America, is elevated to the species level as Posthodiplostomum centrarchi Hoffman, 1958. The undescribed "Posthodiplostomum sp. 3" of Locke et al. (2010) from centrarchid fishes in Canada has identical sequences with the European isolates of P. centrarchi and is recognised as belonging to the same species. The latter parasite, occurring in the alien pumpkinseed sunfish Lepomis gibbosus in Europe, is also supposed to be alien for this continent. It is speculated that it colonised Europe long ago and is currently widespread (recorded in Bulgaria, Slovakia and Spain); based on the cox1 sequence of an adult digenean isolate from the Ebro Delta, Spain, only the grey heron (Ardea cinerea L.) (Ciconiiformes: Ardeidae) is known to be its definitive host in Europe.
- MeSH
- Species Specificity MeSH
- Phylogeny * MeSH
- Perciformes parasitology MeSH
- Electron Transport Complex IV genetics MeSH
- DNA, Ribosomal genetics MeSH
- Smegmamorpha parasitology MeSH
- Trematoda anatomy & histology classification genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Electron Transport Complex IV MeSH
- DNA, Ribosomal MeSH
Neopsilotrema n. g. (Digenea: Psilostomidae) and three new species of psilostomid digeneans are described from birds in North America and Europe: Neopsilotrema lakotae n. sp. from Aythya americana (Eyton) in North Dakota, USA, Neopsilotrema affine n. sp. from Aythya affinis (Eyton) in Minnesota, USA and Neopsilotrema lisitsynae n. sp. from Anas crecca L. in Kherson Region, Ukraine. Neopsilotrema n. g. shares a bipartite seminal vesicle with only three genera within the Psilostomidae, Psilotornus Byrd & Prestwood, 1969, Psilostomum Looss, 1899 and Grysoma Byrd, Bogitsh & Maples, 1961. The new genus differs from Psilotornus in the presence of a muscular pharynx and a massive ventral sucker; the location of the cirrus-sac in relation to the ventral sucker and more posterior location of ovary; the nature of the vitellarium (i.e. comprising large, compact follicles with small vitelline cells vs weakly defined follicles with large vitelline cells); a proportionately shorter forebody; and in parasitisation in anseriform (vs passeriform) birds. Differences between the new genus and Psilostomum comprise the shape of the body, the relative size of the suckers, somewhat longer forebody and a more anterior location of the testes. Neopsilotrema n. g. differs from Grysoma in the relative size of the suckers, the degree of development of prostatic cells, the nature of the vitellarium and the size of the eggs in relation to body length. The European species Neopsilotrema lisitsynae n. sp. is distinguished from its congeners in having a longer, narrower and distinctly more elongate body with a longer post-testicular region and anterior limits of the vitelline fields posterior to ventral sucker. The two North American forms, Neopsilotrema lakotae n. sp. and Neopsilotrema affine n. sp., are cryptic species with largely overlapping metrical data; these are distinguished by comparing genetic data. The phylogenetic hypotheses for the Psilostomidae developed from sequence data analyses based on partial 28S rDNA support the erection of the new genus and the distinction of the three new species. Grysoma marilae (Price, 1942) agrees more closely with the generic diagnosis of Neopsilotrema, especially in relation to the size and shape of the body, the relative length of the forebody and post-testicular field, the structure of the vitellarium, the location of the reproductive organs and the sucker ratio. Consequently, it is here transferred to the new genus as Neopsilotrema marilae (Price, 1942) n. comb.
- MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Ducks parasitology MeSH
- Molecular Sequence Data MeSH
- RNA, Ribosomal, 28S genetics MeSH
- Trematoda anatomy & histology classification genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- North America MeSH
- Ukraine MeSH
- Names of Substances
- RNA, Ribosomal, 28S MeSH
We analysed two novel databases containing 2,380 and 8,202 host-parasite-locality records for trematode parasites of molluscs and fishes, respectively, to assess the biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater environment in Europe. The "mollusc" dataset covers large numbers of pulmonate (29 spp.), "prosobranch" (15 spp.) and bivalve (11 spp.) molluscs acting as first intermediate hosts for 171 trematode species of 89 genera and 35 families. Of these, 23 and 40 species utilise freshwater fishes as definitive and second intermediate hosts, respectively. The most frequently recorded families are the Echinostomatidae Looss, 1899, Diplostomidae Poirier, 1886 and Schistosomatidae Stilles & Hassal, 1898, and the most frequently recorded species are Diplostomum spathaceum (Rudolphi, 1819), D. pseudospathaceum Niewiadomska, 1984 and Echinoparyphium recurvatum (von Linstow, 1873). Four snail species harbour extremely rich trematode faunas: Lymnaea stagnalis (L.) (41 spp.); Planorbis planorbis (L.) (39 spp.); Radix peregra (O.F. Müller) (33 spp.); and R. ovata (Draparnaud) (31 spp.). The "fish" dataset covers 99 fish species of 63 genera and 19 families acting as second intermediate hosts for 66 species of 33 genera and nine families. The most frequently recorded families are the Diplostomidae Poirier, 1886, Strigeidae Railliet, 1919 and Bucephalidae Poche, 1907, and the most frequently recorded species are Diplostomum spathaceum (Rudolphi, 1819), Tylodelphys clavata (von Nordmann, 1832) and Posthodiplostomum cuticola (von Nordmann, 1832). Four cyprinid fishes exhibit the highest species richness of larval trematodes: Rutilus rutilus (L.) (41 spp.); Abramis brama (L.) (34 spp.); Blicca bjoerkna (L.) (33 spp.); and Scardinius erythrophthalmus (L.) (33 spp.). Larval stages of 50 species reported in fish are also reported in freshwater molluscs, thus indicating a relatively good knowledge of the life-cycles of fish trematodes in Europe. We provide host-parasite lists for 55 species of molluscs with a European distribution comprising 413 host-parasite associations.
- MeSH
- Biodiversity * MeSH
- Ecosystem * MeSH
- Larva MeSH
- Mollusca parasitology MeSH
- Fishes parasitology MeSH
- Trematoda classification physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- Europe MeSH
Species of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) belonging to the 'revolutum' species complex were re-examined based on material gathered in an extensive sampling programme in eight countries in Europe. The morphology of the life-cycle stages was studied in naturally and experimentally infected snail and bird hosts. A review, with an updated synonymy, is presented for six European species, including one new to science, i.e. Echinostoma revolutum (Frölich, 1802) (sensu stricto) (type-species), E. bolschewense (Kotova, 1939), E. miyagawai Ishii, 1932, E. nasincovae n. sp., E. paraulum Dietz, 1909 and Echinostoma sp. IG), and keys to the identification of their cercariae and adults are provided.
- MeSH
- Biodiversity * MeSH
- Species Specificity MeSH
- Echinostoma classification cytology physiology MeSH
- Snails parasitology MeSH
- Host-Parasite Interactions MeSH
- Birds parasitology MeSH
- Life Cycle Stages MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH