Nejvíce citovaný článek - PubMed ID 27913695
Huntington disease (HD) is the most frequent monogenetic neurodegenerative disease and can be unequivocally diagnosed even in the preclinical stage, at least in all individuals in whom the CAG expansion mutation in the huntingtin gene (HTT) is in the range of full penetrance. Therefore, important preconditions for an intervention early in the disease process are met, rendering modification of the course of the disease in a clinically meaningful way possible. In this respect, HD can be viewed as a model disorder for exploring neuroprotective treatment approaches. In the past emphasis was placed on the compensation of a suspected neurotransmitter deficit (GABA) analogous to Parkinson's disease and on classical neuroprotective strategies to influence hypothetical common pathways in neurodegenerative diseases (e.g., excitotoxicity, mitochondrial dysfunction, oxidative stress). With the discovery of the causative HTT mutation in 1993, therapeutic research increasingly focused on intervening as proximally as possible in the chain of pathophysiological events. Currently, an important point of intervention is the HTT mRNA with the aim of reducing the continued production of mutant huntingtin gene products and thus relieving the body of their detrimental actions. To this end, various treatment modalities (single-stranded DNA and RNA, divalent RNA and zinc finger repressor complexes, orally available splice modulators) were developed and are currently in clinical trials (phases I-III) or in late stages of preclinical development. In addition, there is the notion that it may be possible to modify the length of the somatically unstable CAG mutation, i.e. its increase in the brain during the lifetime, thereby slowing the progression of HD.
Die Huntington-Krankheit (HK) ist die häufigste monogenetische neurodegenerative Erkrankung und kann bereits im präklinischen Stadium zweifelsfrei diagnostiziert werden, zumindest in allen Fällen, bei denen die CAG-Expansionsmutation im Huntingtin-Gen (HTT) im Bereich der vollen Penetranz liegt. Wichtige Voraussetzungen für eine früh im Krankheitsprozess einsetzende und deshalb den weiteren Verlauf der Krankheit in klinisch relevanter Weise modifizierende Therapie sind damit gegeben und machen die HK zu einer Modellerkrankung für neuroprotektive Behandlungsansätze. In der Vergangenheit lag der Schwerpunkt auf dem Ausgleich vermuteter Neurotransmitterdefizite (GABA) analog zur Parkinson-Erkrankung und auf klassischen neuroprotektiven Strategien zur Beeinflussung hypothetischer gemeinsamer Endstrecken neurodegenerativer Erkrankungen (z. B. Exzitotoxizität, mitochondriale Dysfunktion, oxidativer Stress etc.). Mit der Entdeckung der krankheitsverursachenden HTT-Mutation im Jahr 1993 fokussierte sich die Therapieforschung zunehmend darauf, soweit proximal wie möglich in die pathophysiologische Ereigniskette einzugreifen. Ein wichtiger Ansatzpunkt ist hier die HTT-mRNA mit dem Ziel, die Nachproduktion mutierter Huntingtin-Genprodukte zu senken und damit den Körper von deren schädigenden Auswirkungen zu entlasten; zu diesem Zweck sind verschiedene Behandlungsmodalitäten (einzelsträngige DNA und RNA, divalente RNA und Zinkfinger-Repressorkomplexe, oral verfügbare Spleißmodulatoren) entwickelt worden, die sich in der klinischen Prüfung (Phase I–III) oder in späten Stadien der präklinischen Entwicklung befinden. Zudem zeichnet sich ab, dass es möglich sein könnte, die Länge der somatisch instabilen, d. h. über die Lebenszeit v. a. im Hirngewebe zunehmende CAG-Mutation selbst zu beeinflussen und die Progression der HK hierdurch zu bremsen.
- Klíčová slova
- Antisense oligonucleotide, Disease modification, Gene therapy, HTT mRNA, Neuroprotection,
- MeSH
- antisense oligonukleotidy MeSH
- Huntingtonova nemoc * diagnóza farmakoterapie genetika MeSH
- lidé MeSH
- mozek MeSH
- mutace genetika MeSH
- neurodegenerativní nemoci * MeSH
- protein huntingtin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antisense oligonukleotidy MeSH
- protein huntingtin MeSH
Coenzyme Q10 (CoQ10), a lipophilic substituted benzoquinone, is present in animal and plant cells. It is endogenously synthetized in every cell and involved in a variety of cellular processes. CoQ10 is an obligatory component of the respiratory chain in inner mitochondrial membrane. In addition, the presence of CoQ10 in all cellular membranes and in blood. It is the only endogenous lipid antioxidant. Moreover, it is an essential factor for uncoupling protein and controls the permeability transition pore in mitochondria. It also participates in extramitochondrial electron transport and controls membrane physicochemical properties. CoQ10 effects on gene expression might affect the overall metabolism. Primary changes in the energetic and antioxidant functions can explain its remedial effects. CoQ10 supplementation is safe and well-tolerated, even at high doses. CoQ10 does not cause any serious adverse effects in humans or experimental animals. New preparations of CoQ10 that are less hydrophobic and structural derivatives, like idebenone and MitoQ, are being developed to increase absorption and tissue distribution. The review aims to summarize clinical and experimental effects of CoQ10 supplementations in some neurological diseases such as migraine, Parkinson´s disease, Huntington´s disease, Alzheimer´s disease, amyotrophic lateral sclerosis, Friedreich´s ataxia or multiple sclerosis. Cardiovascular hypertension was included because of its central mechanisms controlling blood pressure in the brainstem rostral ventrolateral medulla and hypothalamic paraventricular nucleus. In conclusion, it seems reasonable to recommend CoQ10 as adjunct to conventional therapy in some cases. However, sometimes CoQ10 supplementations are more efficient in animal models of diseases than in human patients (e.g. Parkinson´s disease) or rather vague (e.g. Friedreich´s ataxia or amyotrophic lateral sclerosis).
- MeSH
- antioxidancia farmakologie MeSH
- lidé MeSH
- mitochondriální nemoci * metabolismus MeSH
- mitochondrie metabolismus MeSH
- nemoci nervového systému * farmakoterapie metabolismus MeSH
- transport elektronů MeSH
- ubichinon analogy a deriváty terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- coenzyme Q10 MeSH Prohlížeč
- ubichinon MeSH
Genetically modified rodent models of Huntington's disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
- Klíčová slova
- Minipigs, nonhuman primates, sheep, therapeutics,
- MeSH
- geneticky modifikovaná zvířata * MeSH
- Huntingtonova nemoc * genetika patologie patofyziologie terapie MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech * MeSH
- ovce MeSH
- prasata MeSH
- primáti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs.
- Klíčová slova
- Brain, Huntingtin, Large animal model, Neuropathology, TgHD,
- MeSH
- bílá hmota patologie ultrastruktura MeSH
- biologické markery metabolismus MeSH
- degenerace nervu patologie MeSH
- geneticky modifikovaná zvířata MeSH
- genotyp MeSH
- hmotnostní úbytek MeSH
- Huntingtonova nemoc patologie MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech MeSH
- motorické korové centrum patologie ultrastruktura MeSH
- myelinová pochva metabolismus MeSH
- nucleus caudatus patologie ultrastruktura MeSH
- prasata MeSH
- protein huntingtin metabolismus MeSH
- proteinové agregáty MeSH
- stárnutí patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- Htt protein, mouse MeSH Prohlížeč
- protein huntingtin MeSH
- proteinové agregáty MeSH
Huntington's disease (HD) is a monogenic, progressive, neurodegenerative disorder with currently no available treatment. The Libechov transgenic minipig model for HD (TgHD) displays neuroanatomical similarities to humans and exhibits slow disease progression, and is therefore more powerful than available mouse models for the development of therapy. The phenotypic characterization of this model is still ongoing, and it is essential to validate biomarkers to monitor disease progression and intervention. In this study, the behavioral phenotype (cognitive, motor and behavior) of the TgHD model was assessed, along with biomarkers for mitochondrial capacity, oxidative stress, DNA integrity and DNA repair at different ages (24, 36 and 48 months), and compared with age-matched controls. The TgHD minipigs showed progressive accumulation of the mutant huntingtin (mHTT) fragment in brain tissue and exhibited locomotor functional decline at 48 months. Interestingly, this neuropathology progressed without any significant age-dependent changes in any of the other biomarkers assessed. Rather, we observed genotype-specific effects on mitochondrial DNA (mtDNA) damage, mtDNA copy number, 8-oxoguanine DNA glycosylase activity and global level of the epigenetic marker 5-methylcytosine that we believe is indicative of a metabolic alteration that manifests in progressive neuropathology. Peripheral blood mononuclear cells (PBMCs) were relatively spared in the TgHD minipig, probably due to the lack of detectable mHTT. Our data demonstrate that neuropathology in the TgHD model has an age of onset of 48 months, and that oxidative damage and electron transport chain impairment represent later states of the disease that are not optimal for assessing interventions.This article has an associated First Person interview with the first author of the paper.
- Klíčová slova
- DNA damage, DNA repair, HD large animal model, Huntington's disease, Mitochondrial function,
- MeSH
- 8-hydroxy-2'-deoxyguanosin MeSH
- chování zvířat * MeSH
- degenerace nervu patologie MeSH
- deoxyguanosin analogy a deriváty metabolismus MeSH
- energetický metabolismus MeSH
- geneticky modifikovaná zvířata MeSH
- genom MeSH
- Huntingtonova nemoc metabolismus patologie MeSH
- lidé MeSH
- miniaturní prasata MeSH
- mitochondrie metabolismus MeSH
- modely nemocí na zvířatech MeSH
- oprava DNA MeSH
- orgánová specificita MeSH
- poškození DNA MeSH
- prasata MeSH
- protein huntingtin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 8-hydroxy-2'-deoxyguanosin MeSH
- deoxyguanosin MeSH
- protein huntingtin MeSH