Most cited article - PubMed ID 28657760
Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes
G-quadruplexes (G4 s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl) porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. This study enabled the synthesis of tetracationic porphyrin derivatives that exhibited binding and stabilizing capacity against G-quadruplex structures; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4 s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl) porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.
- Keywords
- DNA, G-quadruplexes, Molecular dynamics, Molecular recognition, NMR,
- MeSH
- Circular Dichroism MeSH
- DNA * chemistry MeSH
- G-Quadruplexes * MeSH
- Ligands MeSH
- Porphyrins * chemistry MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA * MeSH
- Ligands MeSH
- Porphyrins * MeSH
- tetra(4-N-methylpyridyl)porphine MeSH Browser
Water molecules confined in nanoscale spaces of 2D graphene layers have fascinated researchers worldwide for the past several years, especially in the context of energy storage applications. The water molecules exchanged along with ions during the electrochemical process can aid in wetting and stabilizing the layered materials resulting in an anomalous enhancement in the performance of supercapacitor electrodes. Engineering of 2D carbon electrode materials with various functionalities (oxygen (─O), fluorine (─F), nitrile (─C≡N), carboxylic (─COOH), carbonyl (─C═O), nitrogen (─N)) can alter the ion/water organization in graphene derivatives, and eventually their inherent ion storage ability. Thus, in the current study, a comparative set of functionalized graphene derivatives-fluorine-doped cyanographene (G-F-CN), cyanographene (G-CN), graphene acid (G-COOH), oxidized graphene acid (G-COOH (O)) and nitrogen superdoped graphene (G-N) is systematically evaluated toward charge storage in various aqueous-based electrolyte systems. Differences in functionalization on graphene derivatives influence the electrochemical properties, and the real-time mass exchange during the electrochemical process is monitored by electrochemical quartz crystal microbalance (EQCM). Electrogravimetric assessment revealed that oxidized 2D acid derivatives (G-COOH (O)) are shown to exhibit high ion storage performance along with maximum water transfer during the electrochemical process. The complex understanding of the processes gained during supercapacitor electrode charging in aqueous electrolytes paves the way toward the rational utilization of graphene derivatives in forefront energy storage applications.
- Keywords
- EQCM, Graphene derivatives, confined water molecules, covalent functionalization, energy storage,
- Publication type
- Journal Article MeSH
Mixed double helices formed by RNA and DNA strands, commonly referred to as hybrid duplexes or hybrids, are essential in biological processes like transcription and reverse transcription. They are also important for their applications in CRISPR gene editing and nanotechnology. Yet, despite their significance, the hybrid duplexes have been seldom modeled by atomistic molecular dynamics methodology, and there is no benchmark study systematically assessing the force-field performance. Here, we present an extensive benchmark study of polypurine tract (PPT) and Dickerson-Drew dodecamer hybrid duplexes using contemporary and commonly utilized pairwise additive and polarizable nucleic acid force fields. Our findings indicate that none of the available force-field choices accurately reproduces all the characteristic structural details of the hybrid duplexes. The AMBER force fields are unable to populate the C3'-endo (north) pucker of the DNA strand and underestimate inclination. The CHARMM force field accurately describes the C3'-endo pucker and inclination but shows base pair instability. The polarizable force fields struggle with accurately reproducing the helical parameters. Some force-field combinations even demonstrate a discernible conflict between the RNA and DNA parameters. In this work, we offer a candid assessment of the force-field performance for mixed DNA/RNA duplexes. We provide guidance on selecting utilizable force-field combinations and also highlight potential pitfalls and best practices for obtaining optimal performance.
- MeSH
- DNA * chemistry MeSH
- Nucleic Acid Conformation * MeSH
- Base Pairing MeSH
- RNA * chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA * MeSH
- RNA * MeSH
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
- MeSH
- Biomechanical Phenomena MeSH
- DNA chemistry MeSH
- G-Quadruplexes * MeSH
- Mechanical Phenomena MeSH
- Molecular Dynamics Simulation * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-living G4 folds. The role of other intermediate species such as parallel G-triplexes and G-hairpins in the folding process has been a matter of debate. Here, we use standard and enhanced-sampling molecular dynamics simulations (total length of ∼0.9 ms) to study these potential folding intermediates. We suggest that parallel G-triplex per se is rather an unstable species that is in local equilibrium with a broad ensemble of triplex-like structures. The equilibrium is shifted to well-structured G-triplex by stacked aromatic ligand and to a lesser extent by flanking duplexes or nucleotides. Next, we study propeller loop formation in GGGAGGGAGGG, GGGAGGG and GGGTTAGGG sequences. We identify multiple folding pathways from different unfolded and misfolded structures leading towards an ensemble of intermediates called cross-like structures (cross-hairpins), thus providing atomistic level of description of the single-molecule folding events. In summary, the parallel G-triplex is a possible, but not mandatory short-living (transitory) intermediate in the folding of parallel-stranded G4.
- MeSH
- DNA chemistry genetics metabolism MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry metabolism MeSH
- DNA, Single-Stranded chemistry genetics metabolism MeSH
- Kinetics MeSH
- Nucleic Acid Conformation * MeSH
- Humans MeSH
- Base Sequence MeSH
- Molecular Dynamics Simulation * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Guanine MeSH
- DNA, Single-Stranded MeSH
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ffs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact; i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the ff performance while avoiding introduction of major new imbalances.
- MeSH
- RNA chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA MeSH
We have carried out an extended set of standard and enhanced-sampling MD simulations (for a cumulative simulation time of 620 μs) with the aim to study folding landscapes of the rGGGUUAGGG and rGGGAGGG parallel G-hairpins (PH) with propeller loop. We identify folding and unfolding pathways of the PH, which is bridged with the unfolded state via an ensemble of cross-like structures (CS) possessing mutually tilted or perpendicular G-strands interacting via guanine-guanine H-bonding. The oligonucleotides reach the PH conformation from the unfolded state via a conformational diffusion through the folding landscape, i.e. as a series of rearrangements of the H-bond interactions starting from compacted anti-parallel hairpin-like structures. Although isolated PHs do not appear to be thermodynamically stable we suggest that CS and PH-types of structures are sufficiently populated during RNA guanine quadruplex (GQ) folding within the context of complete GQ-forming sequences. These structures may participate in compact coil-like ensembles that involve all four G-strands and already some bound ions. Such ensembles can then rearrange into the fully folded parallel GQs via conformational diffusion. We propose that the basic atomistic folding mechanism of propeller loops suggested in this work may be common for their formation in RNA and DNA GQs.
- MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry metabolism MeSH
- Kinetics MeSH
- RNA chemistry metabolism MeSH
- RNA Folding * MeSH
- Base Sequence MeSH
- Molecular Dynamics Simulation MeSH
- Thermodynamics MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Guanine MeSH
- RNA MeSH
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
- MeSH
- DNA chemistry MeSH
- Catalysis MeSH
- Nucleic Acid Conformation * MeSH
- Computer Simulation MeSH
- RNA chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- DNA MeSH
- RNA MeSH