Nejvíce citovaný článek - PubMed ID 28704370
Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania
Compounds in sand fly saliva elicit specific immune responses that may play a role in the establishment of canine Leishmania infection. Although canine antibodies to anti-sand fly saliva antigens have been extensively studied, little is known about cellular immune responses against Phlebotomus perniciosus salivary proteins. This study aimed to explore humoral and T-cell-mediated immunity against P. perniciosus salivary proteins in dogs (n = 85) from Mallorca (Spain), a leishmaniosis-endemic area, and find correlations with demographic (age, sex, and breed) and parasite-specific immunological parameters. Anti-sand fly saliva IgG was examined using a P. perniciosus whole salivary gland homogenate (SGH) ELISA and recombinant salivary protein rSP03B ELISA. Interferon gamma (IFN-γ) release whole blood assays with L. infantum soluble antigen (LSA), SGH, and rSP03B were also performed. Positive correlations were found between IgG levels in the SGH and rSP03B tests and between concentrations of SGH IFN-γ and rSP03B IFN-γ. While concentrations of SGH IFN-γ and rSP03B IFN-γ were low and produced only by a minority of dogs (less than 20%), high levels and frequencies of LSA IFN-γ as well as anti-saliva IgG for SGH and rSP03B were detected in a majority of dogs (61% and 75%, respectively). LSA IFN-γ levels were positively correlated with age and Leishmania-specific antibodies. In conclusion, dogs from a leishmaniosis-endemic area presented high humoral immunity against P. perniciosus salivary proteins, but their cellular immunity to these proteins was low and less frequent.
- Klíčová slova
- Leishmania infantum, anti-saliva antibodies, canine, recombinant salivary proteins, specific P. perniciosus saliva IFN-γ,
- MeSH
- buněčná imunita * MeSH
- endemické nemoci MeSH
- hmyzí proteiny * imunologie MeSH
- humorální imunita * MeSH
- imunoglobulin G krev imunologie MeSH
- interferon gama MeSH
- leishmanióza * imunologie veterinární epidemiologie MeSH
- nemoci psů * imunologie parazitologie epidemiologie MeSH
- Phlebotomus * imunologie MeSH
- psi MeSH
- slinné proteiny a peptidy * imunologie MeSH
- T-lymfocyty * imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko epidemiologie MeSH
- Názvy látek
- hmyzí proteiny * MeSH
- imunoglobulin G MeSH
- interferon gama MeSH
- slinné proteiny a peptidy * MeSH
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
- Klíčová slova
- experimental analysis, experimental conditions, human leishmaniasis, influencing factor, mouse model, reproducibility of data, translation,
- MeSH
- Leishmania * imunologie MeSH
- leishmanióza * parazitologie imunologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- reprodukovatelnost výsledků MeSH
- translační biomedicínský výzkum * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Phlebotomus perniciosus is a major vector of Leishmania infantum in the Mediterranean. While the seroprevalence of leishmaniosis in Spanish dogs and cats has been studied, data on the exposure of cats to P. perniciosus bites under natural conditions without repellents is limited. Stray cats could serve as sentinels for L. infantum and P. perniciosus exposure. This study analyzed sera from 204 apparently healthy stray cats, collected from January 2021 to January 2022, for antibodies against P. perniciosus saliva and L. infantum parasites. Anti-sand fly antibodies were detected in 40.69% of cats using an ELISA with the recombinant salivary protein SP03B of P. perniciosus. Seroprevalence of L. infantum infection was 23.52% by Western blot and 27.41% by ELISA, with an overall seroprevalence of 40.69% (95% CI 34.18-47.54%). This is the first assessment of antibody response to P. perniciosus saliva and L. infantum in naturally exposed stray cats in Spain. Further research is needed to examine the salivary antigens recognized by cats and to explore the relationship between P. perniciosus exposure and L. infantum infection severity in cats.
- Klíčová slova
- Cat, ELISA, Leishmania infantum, Phlebotomus perniciosus, serology, western blotting,
- MeSH
- ELISA veterinární MeSH
- hmyz - vektory parazitologie MeSH
- kočky MeSH
- Leishmania infantum * imunologie MeSH
- leishmanióza viscerální * veterinární epidemiologie imunologie MeSH
- nemoci koček * epidemiologie parazitologie imunologie MeSH
- Phlebotomus * parazitologie imunologie MeSH
- protilátky protozoální * krev MeSH
- séroepidemiologické studie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko epidemiologie MeSH
- Názvy látek
- protilátky protozoální * MeSH
Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.
- Klíčová slova
- Leishmania, Meriones, Phlebotomus, asymptomatic infection, reservoir host, xenodiagnosis,
- Publikační typ
- časopisecké články MeSH
Antibodies against Phlebotomus perniciosus sandfly salivary gland homogenate (SGH) and recombinant protein rSP03B, sandfly-borne Toscana virus (TOSV), Sandfly Fever Sicilian virus (SFSV) and Leishmania, as well as DNA of the latter parasite, were investigated in 670 blood samples from 575 human donors in Murcia Region, southeast Spain, in 2017 and 2018. The estimated SGH and rSP03B seroprevalences were 69% and 88%, respectively, although correlation between test results was relatively low (ρ = 0.39). Similarly, TOSV, SFSV and Leishmania seroprevalences were 26%, 0% and 1%, respectively, and Leishmania PCR prevalence was 2%. Prevalences were significantly greater in 2017, overdispersed and not spatially related to each other although both were positively associated with SGH but not to rSP03B antibody optical densities, questioning the value of the latter as a diagnostic marker for these infections in humans.
- Klíčová slova
- Leishmania infantum, anti-saliva antibodies, blood donors, sandflies, sandfly fever sicilian virus, toscana virus,
- MeSH
- dárci krve MeSH
- Leishmania infantum * MeSH
- leishmanióza * parazitologie veterinární MeSH
- lidé MeSH
- Phlebotomus * parazitologie MeSH
- protilátky MeSH
- Psychodidae * MeSH
- rekombinantní proteiny MeSH
- virus horečky pappataci * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko epidemiologie MeSH
- Názvy látek
- protilátky MeSH
- rekombinantní proteiny MeSH
- Klíčová slova
- bioactive molecules, hematophagous vectors, immunomodulation, immunotherapy, saliva,
- MeSH
- členovci - vektory MeSH
- členovci * MeSH
- hmyz - vektory MeSH
- sliny MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- úvodníky MeSH
BACKGROUND: In onchocerciasis endemic areas in Africa, heterogenous biting rates by blackfly vectors on humans are assumed to partially explain age- and sex-dependent infection patterns with Onchocerca volvulus. To underpin these assumptions and further improve predictions made by onchocerciasis transmission models, demographic patterns in antibody responses to salivary antigens of Simulium damnosum s.l. are evaluated as a measure of blackfly exposure. METHODOLOGY/PRINCIPAL FINDINGS: Recently developed IgG and IgM anti-saliva immunoassays for S. damnosum s.l. were applied to blood samples collected from residents in four onchocerciasis endemic villages in Ghana. Demographic patterns in antibody levels according to village, sex and age were explored by fitting generalized linear models. Antibody levels varied between villages but showed consistent patterns with age and sex. Both IgG and IgM responses declined with increasing age. IgG responses were generally lower in males than in females and exhibited a steeper decline in adult males than in adult females. No sex-specific difference was observed in IgM responses. CONCLUSIONS/SIGNIFICANCE: The decline in age-specific antibody patterns suggested development of immunotolerance or desensitization to blackfly saliva antigen in response to persistent exposure. The variation between sexes, and between adults and youngsters may reflect differences in behaviour influencing cumulative exposure. These measures of antibody acquisition and decay could be incorporated into onchocerciasis transmission models towards informing onchocerciasis control, elimination, and surveillance.
- MeSH
- dítě MeSH
- dospělí MeSH
- hmyz - vektory imunologie parazitologie MeSH
- imunoglobulin G krev MeSH
- imunoglobulin M krev MeSH
- kousnutí a bodnutí hmyzem epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Onchocerca volvulus růst a vývoj MeSH
- onchocerkóza epidemiologie přenos MeSH
- předškolní dítě MeSH
- protilátky krev MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Simuliidae imunologie parazitologie MeSH
- sliny imunologie MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobulin G MeSH
- imunoglobulin M MeSH
- protilátky MeSH
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
- Klíčová slova
- Bangladesh, IgG antibodies, Leishmania donovani, Marker of exposure, Phlebotomus argentipes, Salivary glands,
- MeSH
- hmyzí proteiny * imunologie MeSH
- kousnutí a bodnutí epidemiologie MeSH
- Leishmania donovani MeSH
- lidé MeSH
- Phlebotomus * MeSH
- slinné proteiny a peptidy * imunologie MeSH
- sliny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Bangladéš epidemiologie MeSH
- Názvy látek
- hmyzí proteiny * MeSH
- slinné proteiny a peptidy * MeSH
Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 Å resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.
- Klíčová slova
- Ixodes ricinus, blood coagulation, crystal structure, parasite, saliva, serpin, tick,
- MeSH
- aktivace komplementu účinky léků imunologie fyziologie MeSH
- erytrocyty metabolismus MeSH
- exprese genu genetika MeSH
- hemokoagulace účinky léků fyziologie MeSH
- klíště enzymologie genetika metabolismus MeSH
- komplement metabolismus MeSH
- lymeská nemoc MeSH
- nymfa MeSH
- proteiny členovců metabolismus MeSH
- regulace genové exprese genetika MeSH
- serpiny metabolismus ultrastruktura MeSH
- slinné žlázy metabolismus MeSH
- sliny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplement MeSH
- proteiny členovců MeSH
- serpiny MeSH
Background: Leishmaniasis is a globally important yet neglected parasitic disease transmitted by phlebotomine sand flies. With new candidate vaccines in or near the clinic, a controlled human challenge model (CHIM) using natural sand fly challenge would provide a method for early evaluation of prophylactic efficacy. Methods : We evaluated the biting frequency and adverse effects resulting from exposure of human volunteers to bites of either Phlebotomus papatasi or P. duboscqi, two natural vectors of Leishmania major. 12 healthy participants were recruited (mean age 40.2 ± 11.8 years) with no history of significant travel to regions where L. major-transmitting sand flies are prevalent. Participants were assigned to either vector by 1:1 allocation and exposed to five female sand flies for 30 minutes in a custom biting chamber. Bite frequency was recorded to confirm a bloodmeal was taken. Participant responses and safety outcomes were monitored using a visual analogue scale (VAS), clinical examination, and blood biochemistry. Focus groups were subsequently conducted to explore participant acceptability. Results: All participants had at least one successful sand fly bite with none reporting any serious adverse events, with median VAS scores of 0-1/10 out to day 21 post-sand fly bite. Corresponding assessment of sand flies confirmed that for each participant at least 1/5 sand flies had successfully taken a bloodmeal (overall mean 3.67±1.03 bites per participant). There was no significant difference between P. papatasi and P. duboscqi in the number of bites resulting from 5 sand flies applied to human participants (3.3±0.81 vs 3.00±1.27 bites per participant; p=0.56) . In the two focus groups (n=5 per group), themes relating to positive participant-reported experiences of being bitten and the overall study, were identified. Conclusions: These results validate a protocol for achieving successful sand fly bites in humans that is safe, well-tolerated and acceptable for participants. Clinicaltrials.gov registration: NCT03999970 (27/06/2019).
- Klíčová slova
- Controlled human infection models; leishmaniasis, focus groups, sand flies; public engagement, vaccines,
- Publikační typ
- časopisecké články MeSH