Most cited article - PubMed ID 30349512
Early and Non-invasive Diagnosis of Aspergillosis Revealed by Infection Kinetics Monitored in a Rat Model
BACKGROUND: Siderophores are small iron-binding molecules produced by microorganisms to facilitate iron acquisition from the environment. Radiolabelled siderophores offer a promising solution for infection imaging, as they can specifically target the pathophysiological mechanisms of pathogens. Gallium-68 can replace the iron in siderophores, enabling molecular imaging with positron emission tomography (PET). Stereospecific interactions play a crucial role in the recognition of receptors, transporters, and iron utilisation. Furthermore, these interactions have an impact on the host environment, affecting pharmacokinetics and biodistribution. This study examines the influence of siderophore stereoisomerism on imaging properties, with a focus on ferrirubin (FR) and ferrirhodin (FRH), two cis-trans isomeric siderophores of the ferrichrome type. RESULTS: Tested siderophores were labelled with gallium-68 with high radiochemical purity. The resulting complexes differed in their in vitro characteristics. [68Ga]Ga-FRH showed less hydrophilic properties and higher protein binding values than [68Ga]Ga-FR. The stability studies confirmed the high radiochemical stability of both [68Ga]Ga-siderophores in all examined media. Both siderophores were found to be taken up by S. aureus, K. pneumoniae and P. aeruginosa with similar efficacy. The biodistribution tested in normal mice showed rapid renal clearance with low blood pool retention and fast clearance from examined organs for [68Ga]Ga-FR, whereas [68Ga]Ga-FRH showed moderate retention in blood, resulting in slower pharmacokinetics. PET/CT imaging of mice injected with [68Ga]Ga-FR and [68Ga]Ga-FRH confirmed findings from ex vivo biodistribution studies. In a mouse model of S. aureus myositis, both radiolabeled siderophores showed radiotracer accumulation at the site of infection. CONCLUSIONS: The 68Ga-complexes of stereoisomers ferrirubin and ferrirhodin revealed different pharmacokinetic profiles. In vitro uptake was not affected by isomerism. Both compounds had uptake with the same bacterial culture with similar efficacy. PET/CT imaging showed that the [68Ga]Ga-complexes accumulate at the site of S. aureus infection, highlighting the potential of [68Ga]Ga-FR as a promising tool for infection imaging. In contrast, retention of the radioactivity in the blood was observed for [68Ga]Ga-FRH. In conclusion, the stereoisomerism of potential radiotracers should be considered, as even minor structural differences can influence their pharmacokinetics and, consequently, the results of PET imaging.
- Keywords
- Imaging, Infection, Positron emission tomography, Siderophore, Stereoisomers,
- Publication type
- Journal Article MeSH
Invasive fungal infections have become a major challenge for public health, mainly due to the growing numbers of immunocompromised patients, with high morbidity and mortality. Currently, conventional imaging modalities such as computed tomography and magnetic resonance imaging contribute largely to the noninvasive diagnosis and treatment evaluation of those infections. These techniques, however, often fall short when a fast, noninvasive and specific diagnosis of fungal infection is necessary. Molecular imaging, especially using nuclear medicine-based techniques, aims to develop fungal-specific radiotracers that can be tested in preclinical models and eventually translated to human applications. In the last few decades, multiple radioligands have been developed and tested as potential fungal-specific tracers. These include radiolabeled peptides, antifungal drugs, siderophores, fungal-specific antibodies, and sugars. In this review, we provide an overview of the pros and cons of the available radiotracers. We also address the future prospects of fungal-specific imaging.
- Keywords
- PET, immunoPET, invasive fungal infection, radionuclide imaging, siderophores,
- MeSH
- Antifungal Agents therapeutic use MeSH
- Invasive Fungal Infections * MeSH
- Humans MeSH
- Mycoses * diagnostic imaging MeSH
- Tomography, X-Ray Computed MeSH
- Positron-Emission Tomography methods MeSH
- Antibodies, Fungal MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- Antifungal Agents MeSH
- Antibodies, Fungal MeSH
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
- Keywords
- PCR, aspergillosis, bronchoalveolar lavage fluid, galactomannan, lateral flow, metagenomic next-generation sequencing, metallophore, serum assays, siderophore, β-d-glucan,
- Publication type
- Journal Article MeSH
- Review MeSH
Germination from conidia to hyphae and hyphal propagation of Aspergillus fumigatus are the key pathogenic steps in the development of invasive pulmonary aspergillosis (IPA). By applying in vitro observations in a clinical study of 13 patients diagnosed with probable IPA, here, we show that the transition from colonization to the A. fumigatus invasive stage is accompanied by the secretion of triacetylfusarinine C (TafC), triacetylfusarinine B (TafB), and ferricrocin (Fc) siderophores into urine, with strikingly better sensitivity performance than serum sampling. The best-performing index, the TafC/creatinine index, with a median value of 17.2, provided 92.3% detection sensitivity (95% confidence interval [CI], 64.0 to 99.8%) and 100% specificity (95% CI, 84.6 to 100%), i.e., substantially better than the corresponding indications provided by galactomannan (GM) and β-d-glucan (BDG) serology. For the same patient cohort, the serum GM and BDG sensitivities were 46.2 and 76.9%, respectively, and their specificities were 86.4 and 63.6%, respectively. The time-dependent specific appearance of siderophores in the host's urine represents an impactful clinical diagnostic advantage in the early discrimination of invasive aspergillosis from colonization. A favorable concentration of TafC in a clinical specimen distant from a deep infection site enables the noninvasive sampling of patients suffering from IPA. IMPORTANCE The importance of this research lies in the demonstration that siderophore analysis can distinguish between asymptomatic colonization and invasive pulmonary aspergillosis. We found clear associations between phases of fungal development, from conidial germination to the proliferative stage of invasive aspergillosis, and changes in secondary metabolite secretion. The critical extracellular fungal metabolites triacetylfusarinines C and B are produced during the polarized germination or postpolarized growth phase and reflect the morphological status of the proliferating pathogen. False positivity in Aspergillus diagnostics is minimized as mammalian cells do not synthesize Aspergillus siderophore or mycotoxin molecules.
- Keywords
- Aspergillus fumigatus, colonization, invasive pulmonary aspergillosis, iron metabolism, mass spectrometry, noninvasive diagnosis, siderophore, urine analysis,
- Publication type
- Journal Article MeSH
The multiple forms of pulmonary aspergillosis caused by Aspergillus species are the most common respiratory mycoses. Although invasive, the analysis of diagnostic biomarkers in bronchoalveolar lavage fluid (BALF) is a clinical standard for diagnosing these conditions. The BALF samples from 22 patients with proven or probable aspergillosis were assayed for human pentraxin 3 (Ptx3), fungal ferricrocin (Fc), and triacetylfusarinine C (TafC) in a retrospective study. The infected group included patients with invasive pulmonary aspergillosis (IPA) and chronic aspergillosis (CPA). The BALF data were compared to a control cohort of 67 patients with invasive pulmonary mucormycosis (IPM), non-Aspergillus colonization, or bacterial infections. The median Ptx3 concentrations in patients with and without aspergillosis were 4545.5 and 242.0 pg/mL, respectively (95% CI, p < 0.05). The optimum Ptx3 cutoff for IPA was 2545 pg/mL, giving a sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 100, 98, 95, and 100%, respectively. The median Ptx3 concentration for IPM was high at 4326 pg/mL. Pentraxin 3 assay alone can distinguish IPA from CPA and invasive fungal disease from colonization. Combining Ptx3 and TafC assays enabled the diagnostic discrimination of IPM and IPA, giving a specificity and PPV of 100%.
- Keywords
- bronchoalveolar lavage fluid, invasive fungal disease, non-neutropenic, pentraxin-3, pulmonary aspergillosis, triacetylfusarinine C,
- Publication type
- Journal Article MeSH
In acutely ill patients, particularly in intensive care units or in mixed infections, time to a microbe-specific diagnosis is critical to a successful outcome of therapy. We report the application of evolving technologies involving mass spectrometry to diagnose and monitor a patient's course. As proof of this concept, we studied five patients and used two rat models of mono-infection and coinfection. We report the noninvasive combined monitoring of Aspergillus fumigatus and Pseudomonas aeruginosa infection. The invasive coinfection was detected by monitoring the fungal triacetylfusarinine C and ferricrocin siderophore levels and the bacterial metabolites pyoverdin E, pyochelin, and 2-heptyl-4-quinolone, studied in the urine, endotracheal aspirate, or breath condensate. The coinfection was monitored by mass spectrometry followed by isotopic data filtering. In the rat infection model, detection indicated 100-fold more siderophores in urine compared to sera, indicating the diagnostic potential of urine sampling. The tools utilized in our studies can now be examined in large clinical series, where we could expect the accuracy and speed of diagnosis to be competitive with conventional methods and provide advantages in unraveling the complexities of mixed infections.
- Keywords
- Aspergillus fumigatus, Pseudomonas aeruginosa, coinfection, invasive infection, noninvasive diagnosis, quorum-sensing molecules, siderophores, virulence factor,
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Invasive pulmonary aspergillosis (IPA) is a life-threatening form of fungal infection, primarily in immunocompromised patients and associated with significant mortality. Diagnostic procedures are often invasive and/or time consuming and existing antifungals can be constrained by dose-limiting toxicity and drug interaction. In this study, we modified triacetylfusarinine C (TAFC), the main siderophore produced by the opportunistic pathogen Aspergillus fumigatus (A. fumigatus), with antifungal molecules to perform antifungal susceptibility tests and molecular imaging. A variation of small organic molecules (eflornithine, fludioxonil, thiomersal, fluoroorotic acid (FOA), cyanine 5 (Cy5) with antifungal activity were coupled to diacetylfusarinine C (DAFC), resulting in a "Trojan horse" to deliver antifungal compounds specifically into A. fumigatus hyphae by the major facilitator transporter MirB. Radioactive labeling with gallium-68 allowed us to perform in vitro characterization (distribution coefficient, stability, uptake assay) as well as biodistribution experiments and PET/CT imaging in an IPA rat infection model. Compounds chelated with stable gallium were used for antifungal susceptibility tests. [Ga]DAFC-fludioxonil, -FOA, and -Cy5 revealed a MirB-dependent active uptake with fungal growth inhibition at 16 µg/mL after 24 h. Visualization of an A. fumigatus infection in lungs of a rat was possible with gallium-68-labeled compounds using PET/CT. Heterogeneous biodistribution patterns revealed the immense influence of the antifungal moiety conjugated to DAFC. Overall, novel antifungal siderophore conjugates with promising fungal growth inhibition and the possibility to perform PET imaging combine both therapeutic and diagnostic potential in a theranostic compound for IPA caused by A. fumigatus.
- Keywords
- Aspergillus fumigatus, PET/CT, TAFC, antifungal, antifungal susceptibility testing, invasive pulmonary aspergillosis, siderophore, theranostics,
- Publication type
- Journal Article MeSH
Invasive fungal infections such as aspergillosis are life-threatening diseases mainly affecting immuno-compromised patients. The diagnosis of fungal infections is difficult, lacking specificity and sensitivity. This review covers findings on the preclinical use of siderophores for the molecular imaging of infections. Siderophores are low molecular mass chelators produced by bacteria and fungi to scavenge the essential metal iron. Replacing iron in siderophores by radionuclides such as gallium-68 allowed the targeted imaging of infection by positron emission tomography (PET). The proof of principle was the imaging of pulmonary Aspergillus fumigatus infection using [68Ga]Ga-triacetylfusarinine C. Recently, this approach was expanded to imaging of bacterial infections, i.e., with Pseudomonas aeruginosa. Moreover, the conjugation of siderophores and fluorescent dyes enabled the generation of hybrid imaging compounds, allowing the combination of PET and optical imaging. Nevertheless, the high potential of these imaging probes still awaits translation into clinics.
- Keywords
- bacterial, fluorescence, fungal, imaging, infection, positron emission tomography, siderophore,
- Publication type
- Journal Article MeSH
- Review MeSH
Aspergillus fumigatus (A. fumigatus) is a human pathogen causing severe invasive fungal infections, lacking sensitive and selective diagnostic tools. A. fumigatus secretes the siderophore desferri-triacetylfusarinine C (TAFC) to acquire iron from the human host. TAFC can be labelled with gallium-68 to perform positron emission tomography (PET/CT) scans. Here, we aimed to chemically modify TAFC with fluorescent dyes to combine PET/CT with optical imaging for hybrid imaging applications. Starting from ferric diacetylfusarinine C ([Fe]DAFC), different fluorescent dyes were conjugated (Cy5, SulfoCy5, SulfoCy7, IRDye 800CW, ATTO700) and labelled with gallium-68 for in vitro and in vivo characterisation. Uptake assays, growth assays and live-cell imaging as well as biodistribution, PET/CT and ex vivo optical imaging in an infection model was performed. Novel fluorophore conjugates were recognized by the fungal TAFC transporter MirB and could be utilized as iron source. Fluorescence microscopy showed partial accumulation into hyphae. µPET/CT scans of an invasive pulmonary aspergillosis (IPA) rat model revealed diverse biodistribution patterns for each fluorophore. [68Ga]Ga-DAFC-Cy5/SufloCy7 and -IRDye 800CW lead to a visualization of the infected region of the lung. Optical imaging of ex vivo lungs corresponded to PET images with high contrast of infection versus non-infected areas. Although fluorophores had a decisive influence on targeting and pharmacokinetics, these siderophores have potential as a hybrid imaging compounds combining PET/CT with optical imaging applications.
- Keywords
- PET, fluorescence microscopy, gallium-68, invasive pulmonary aspergillosis, near infrared, siderophores,
- MeSH
- Aspergillus fumigatus MeSH
- Fluorescent Dyes MeSH
- Microscopy, Fluorescence MeSH
- Invasive Pulmonary Aspergillosis diagnostic imaging microbiology MeSH
- Binding, Competitive MeSH
- Hydrogen-Ion Concentration MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Positron Emission Tomography Computed Tomography MeSH
- Rats, Inbred Lew MeSH
- Gallium Radioisotopes chemistry MeSH
- Siderophores metabolism MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fluorescent Dyes MeSH
- Gallium-68 MeSH Browser
- Gallium Radioisotopes MeSH
- Siderophores MeSH