Nejvíce citovaný článek - PubMed ID 30459416
Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae)
The click beetles (Elateridae) represent the major and well-known group of the polyphagan superfamily Elateroidea. Despite a relatively rich fossil record of Mesozoic Elateridae, only a few species are described from the Upper Cretaceous Burmese amber. Although Elateridae spend most of their lives as larvae, our knowledge on immature stages of this family is limited, which is especially valid for the fossils. So far, only a single larval click beetle has been reported from Burmese amber. Here, we describe two larval specimens from the same deposit which based on their morphology unambiguously belong to the predominantly Southern Hemisphere subfamily Pityobiinae, being the most similar to the representatives of tribe Tibionemini. However, since the larvae of the closely related bioluminescent Campyloxenini have not yet been described, we place our specimens to Tibionemini only tentatively. One species of Pityobiinae was recently described from Burmese amber based on adults, and we discuss if it can be congeneric with the here-reported larvae. Recent representatives of the Tibionemini + Campyloxenini clade are known from South America and New Zealand, and this group is hypothesized to have a Gondwanan origin. Hence, the newly discovered Burmese amber larvae may further contribute to a recently highly debated hypothesis that biota of the resin-producing forest on the Burma Terrane, which was probably an island drifting northward at the time of amber deposition, had at least partly Gondwanan affinities. The discovery of enigmatic click beetle larvae in the Upper Cretaceous Burmese amber sheds further light on the palaeodiversity and distribution of the relatively species-poor Gondwanan clade of click beetles, which contain a recent bioluminescent lineage, as well as on the taxonomic composition of the extinct Mesozoic ecosystem.
- Klíčová slova
- Australia, Distribution, Elateridae, Fossil, Morphology, Pityobiinae,
- MeSH
- brouci * anatomie a histologie klasifikace MeSH
- fylogeneze MeSH
- jantar * MeSH
- larva * anatomie a histologie MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Myanmar MeSH
- Názvy látek
- jantar * MeSH
Gondwanan elaterids, previously thought to be unrelated, include bioluminescent Campyloxenus earlier placed in bioluminescent Pyrophorinae. Genomic data suggest close relationships between Gondwanan groups. We maintain Morostomatinae and Hapatesinae and redefine Pityobiinae with Nearctic Pityobiini, Gondwanan Parablacini stat. nov., Campyloxenini stat. nov., and Tibionemini trib. nov. Their ancestors putatively underwent differentiation in Gondwana during the Cretaceous separation of southern continents. In contrast with their age, extant groups are species poor. Campyloxenus represents a recent origin of bioluminescence, no older than ∼53 my. Its large pronotal lanterns differ from Pyrophorini and resemble color patches of sympatric beetle co-mimics. This discovery highlights the fourth or fifth origin of bioluminescence in Elateroidea, alongside the lampyroid clade, click beetles Pyrophorini, Alampoides and Coctilelater in Anaissini (Pyrophorinae), and Balgus schnusei (Thylacosterninae). While our phylogenetic findings illuminate the phylogenetic aspects, the complete story awaits further field observations and in-depth genomic analyses of biochemical pathways used by bioluminescent elateroids.
- Klíčová slova
- Entomology, evolutionary biology, phylogenetics,
- Publikační typ
- časopisecké články MeSH
Rhagophthalmidae are a small beetle family known from the eastern Palaearctic and Oriental realms. Rhagophthalmidae are closely related to railroad worms (Phengodidae) and fireflies (Lampyridae) with which they share highly modified paedomorphic females and the ability to emit light. Currently, Rhagophthalmidae include 66 species classified in the following 12 genera: Bicladodrilus Pic, 1921 (two spp.), Bicladum Pic, 1921 (two spp.), Dioptoma Pascoe, 1860 (two spp.), Diplocladon Gorham, 1883 (two spp.), Dodecatoma Westwood, 1849 (eight spp.), Falsophrixothrix Pic, 1937 (six spp.), Haplocladon Gorham, 1883 (two spp.), Menghuoius Kawashima, 2000 (three spp.), Mimoochotyra Pic, 1937 (one sp.), Monodrilus Pic, 1921 (two spp. in two subgenera), Pseudothilmanus Pic, 1918 (two spp.), and Rhagophthalmus Motschulsky, 1854 (34 spp.). The replacement name Haplocladongorhami Kundrata, nom. nov. is proposed for Diplocladonhasseltii Gorham, 1883b (described in subgenus Haplocladon) which is preoccupied by Diplocladonhasseltii Gorham, 1883a. The genus Reductodrilus Pic, 1943 is tentatively placed in Lampyridae: Ototretinae. Lectotypes are designated for Pseudothilmanusalatus Pic, 1918 and P.marginalis Pic, 1918. Interestingly, in the eastern part of their distribution, Rhagophthalmidae have remained within the boundaries of the Sunda Shelf and the Philippines demarcated by the Wallace Line, which separates the Oriental and Australasian realms. This study is intended to be a first step towards a comprehensive revision of the group on both genus and species levels. Additionally, critical problems and prospects for rhagophthalmid research are briefly discussed.
- Klíčová slova
- Catalogue, Drilidae, Lampyridae, Oriental Region, Phengodidae, classification, neoteny,
- Publikační typ
- časopisecké články MeSH
Beetles constitute the most biodiverse animal order with over 380 000 described species and possibly several million more yet unnamed. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here, we use a dataset of 68 single-copy nuclear protein-coding (NPC) genes sampling 129 out of the 193 recognized extant families as well as the first comprehensive set of fully justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity, we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov. and Staphyliniformia sensu nov., and Erotyloidea stat. nov., Nitiduloidea stat. nov. and Cucujoidea sensu nov., alongside changes below the superfamily level. Our divergence time analyses recovered a late Carboniferous origin of Coleoptera, a late Palaeozoic origin of all modern beetle suborders and a Triassic-Jurassic origin of most extant families, while fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution.
- Klíčová slova
- CAT-GTR, Coleoptera, classification, diversification, phylogenomics, substitution modelling,
- Publikační typ
- časopisecké články MeSH
Conservation efforts must be evidence-based, so rapid and economically feasible methods should be used to quantify diversity and distribution patterns. We have attempted to overcome current impediments to the gathering of biodiversity data by using integrative phylogenomic and three mtDNA fragment analyses. As a model, we sequenced the Metriorrhynchini beetle fauna, sampled from ~700 localities in three continents. The species-rich dataset included ~6500 terminals, ~ 1850 putative species delimited at 5% uncorrected pairwise threshold, possibly ~1000 of them unknown to science. Neither type of data could alone answer our questions on biodiversity and phylogeny. The phylogenomic backbone enabled the integrative delimitation of robustly defined natural genus-group units that will inform future research. Using constrained mtDNA analysis, we identified the spatial structure of species diversity, very high species-level endemism, and a biodiversity hotspot in New Guinea. We suggest that focused field research and subsequent laboratory and bioinformatic workflow steps would substantially accelerate the inventorying of any hyperdiverse tropical group with several thousand species. The outcome would be a scaffold for the incorporation of further data from environmental sequencing and ecological studies. The database of sequences could set a benchmark for the spatiotemporal evaluation of biodiversity, would support evidence-based conservation planning, and would provide a robust framework for systematic, biogeographic, and evolutionary studies.
- Klíčová slova
- biodiversity, conservation, ecology, evolutionary biology, mtDNA, net-winged beetles, phylogenomics,
- MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- brouci klasifikace genetika MeSH
- fylogeneze * MeSH
- mitochondriální DNA genetika MeSH
- stanovení celkové genové exprese MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Nová Guinea MeSH
- Názvy látek
- mitochondriální DNA MeSH
Click-beetles (Coleoptera: Elateridae) are an abundant, diverse, and economically important beetle family that includes bioluminescent species. To date, molecular phylogenies have sampled relatively few taxa and genes, incompletely resolving subfamily level relationships. We present a novel probe set for anchored hybrid enrichment of 2260 single-copy orthologous genes in Elateroidea. Using these probes, we undertook the largest phylogenomic study of Elateroidea to date (99 Elateroidea, including 86 Elateridae, plus 5 non-elateroid outgroups). We sequenced specimens from 88 taxa to test the monophyly of families, subfamilies and tribes. Maximum likelihood and coalescent phylogenetic analyses produced well-resolved topologies. Notably, the included non-elaterid bioluminescent families (Lampyridae + Phengodidae + Rhagophthalmidae) form a clade within the otherwise monophyletic Elateridae, and Sinopyrophoridae may not warrant recognition as a family. All analyses recovered the elaterid subfamilies Elaterinae, Agrypninae, Cardiophorinae, Negastriinae, Pityobiinae, and Tetralobinae as monophyletic. Our results were conflicting on whether the hypnoidines are sister to Dendrometrinae or Cardiophorinae + Negastriinae. Moreover, we show that fossils with the eucnemid-type frons and elongate cylindrical shape may belong to Eucnemidae, Elateridae: Thylacosterninae, ancestral hard-bodied cantharoids or related extinct groups. Proposed taxonomic changes include recognition of Plastocerini as a tribe in Dendrometrinae and Hypnoidinae stat. nov. as a subfamily within Elateridae.
- Klíčová slova
- Elateridae, Lampyridae, Phengodidae, Rhagophthalmidae, Sinopyrophoridae, anchored hybrid enrichment, baitset, classification, four-cluster likelihood mapping, phylogenomics,
- Publikační typ
- časopisecké články MeSH
The Elateridae (click-beetles) are the largest family in Elateroidea; however, their relationships, systematics and classification remain unclear. Our understanding of the origin, evolution, palaeodiversity and palaeobiogeography of Elateridae, as well as reconstruction of a reliable time-calibrated phylogeny for the group, are hampered by the lack of detailed knowledge of their fossil record. In this study, we summarize the current knowledge on all described fossil species in Elateridae, including their type material, geographic origin, age, bibliography and remarks on their systematic placement. Altogether, 261 fossil species classified in 99 genera and nine subfamilies are currently listed in this family. The Mesozoic click-beetle diversity includes 143 species, with most of them described from the Jurassic Karatau, and 118 described species are known from the Cenozoic deposits, mainly from the Eocene North American Florissant Formation and European Baltic amber. Available data on the described past diversity of Elateridae suggest that almost all fossil lineages in this group are in urgent need of revision and numerous Mesozoic species might belong to different families. Our study is intended to serve as a comprehensive basis for all subsequent research focused on the click-beetle fossil record.
- Klíčová slova
- Cenozoic, Eucnemidae, Mesozoic, catalogue, classification, click-beetles, evolution, palaeodiversity, systematics,
- Publikační typ
- časopisecké články MeSH
Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals differ in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with differently coloured unprofitable relatives. We show that the highly conspicuous patterns evolve within communities predominantly formed by less conspicuous Müllerian mimics and, and often only a single species displays a novel pattern. Our work is a forerunner to the detailed research into the aposematic signalling of net-winged beetles.
- MeSH
- Bayesova věta MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- brouci anatomie a histologie klasifikace fyziologie MeSH
- fenotyp MeSH
- fylogeneze * MeSH
- fylogeografie * MeSH
- hustota populace MeSH
- kvantitativní znak dědičný MeSH
- mimikry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Elateridae is a taxon with very unstable classification and a number of conflicting phylogenetic hypotheses have been based on morphology and molecular data. We assembled eight complete mitogenomes for seven elaterid subfamilies and merged these taxa with an additional 22 elaterids and an outgroup. The structure of the newly produced mitogenomes showed a very similar arrangement with regard to all earlier published mitogenomes for the Elateridae. The maximum likelihood and Bayesian analyses indicated that Hapatesus Candèze, 1863, is a sister of Parablacinae and Pityobiinae. Therefore, Hapatesinae, a new subfamily, is proposed for the Australian genera Hapatesus (21 spp.) and Toorongus Neboiss, 1957 (4 spp.). Parablacinae, Pityobiinae, and Hapatesinae have a putative Gondwanan origin as the constituent genera are known from the Australian region (9 genera) and Neotropical region (Tibionema Solier, 1851), and only Pityobius LeConte, 1853, occurs in the Nearctic region. Another putative Gondwanan lineage, the Afrotropical Morostomatinae, forms either a serial paraphylum with the clade of Parablacinae, Pityobiinae, and Hapatesinae or is rooted in a more terminal position, but always as an independent lineage. An Eudicronychinae lineage was either recovered as a sister to Melanotini or as a deep split inside Elaterinae and we herein transfer the group to Elaterinae as Eudicronychini, a new status. The mitochondrial genomes provide a sufficient signal for the placement of most lineages, but the deep bipartitions need to be compared with phylogenomic analyses.
- Klíčová slova
- Australian region, Gondwana, mitochondrial genomes, new status, new subfamily, phylogeny, taxonomy,
- Publikační typ
- časopisecké články MeSH
Beetle fossils are a rich source of information about the palaeodiversity and evolutionary history of the order Coleoptera. Despite the increasing rate of fossil research on click-beetles (Coleoptera: Elateridae), the most diverse group in the superfamily Elateroidea, their fossil record has remained largely unstudied. This may be caused by the combination of their rather uniform external morphology and the suboptimal state of preservation and visibility in most fossil specimens. Here, we used X-ray micro-computed tomography to reconstruct the morphology of an interesting click-beetle from Eocene Baltic amber, which had some principal diagnostic characters obscured by opaque bubbles and body position. Our results suggest that the newly described Baltelater bipectinatus gen. et sp. nov. belongs to tribe Protelaterini within subfamily Lissominae. Since Protelaterini have a predominantly Gondwanan distribution, our discovery is of a great importance for the historical biogeography of the group. Very distinctive are the bipectinate antennae with 11 antennomeres and with rami beginning on antennomere IV, which are not found in any recent Elateridae. The discovery of a new click-beetle lineage from European Eocene amber sheds further light on the palaeodiversity and historical diversification of the family as well as on the composition of the extinct amber forest ecosystem.
- MeSH
- biologická evoluce MeSH
- brouci fyziologie MeSH
- jantar MeSH
- lesy MeSH
- paleontologie metody MeSH
- rentgenová mikrotomografie metody MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- pobaltské republiky MeSH
- Názvy látek
- jantar MeSH