Most cited article - PubMed ID 30666658
Regulation of S1PR2 by the EBV oncogene LMP1 in aggressive ABC-subtype diffuse large B-cell lymphoma
BACKGROUND: A total of 30-40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. METHODS: We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. RESULTS: We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. CONCLUSIONS: Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients.
- Keywords
- CD20 monoclonal antibodies, DLBCL, S1P, S1PR1, SPHK1, macrophages, ofatumumab, phagocytosis, rituximab,
- Publication type
- Journal Article MeSH
Although the over-expression of angiogenic factors is reported in diffuse large B-cell lymphoma (DLBCL), the poor response to anti-VEGF drugs observed in clinical trials suggests that angiogenesis in these tumours might be driven by VEGF-independent pathways. We show that sphingosine kinase-1 (SPHK1), which generates the potent bioactive sphingolipid sphingosine-1-phosphate (S1P), is over-expressed in DLBCL. A meta-analysis of over 2000 cases revealed that genes correlated with SPHK1 mRNA expression in DLBCL were significantly enriched for tumour angiogenesis meta-signature genes; an effect evident in both major cell of origin (COO) and stromal subtypes. Moreover, we found that S1P induces angiogenic signalling and a gene expression programme that is present within the tumour vasculature of SPHK1-expressing DLBCL. Importantly, S1PR1 functional antagonists, including Siponimod, and the S1P neutralising antibody, Sphingomab, inhibited S1P signalling in DLBCL cells in vitro. Furthermore, Siponimod, also reduced angiogenesis and tumour growth in an S1P-producing mouse model of angiogenic DLBCL. Our data define a potential role for S1P signalling in driving an angiogenic gene expression programme in the tumour vasculature of DLBCL and suggest novel opportunities to target S1P-mediated angiogenesis in patients with DLBCL.
- MeSH
- Lymphoma, Large B-Cell, Diffuse genetics metabolism pathology MeSH
- Endothelial Cells metabolism MeSH
- Immunohistochemistry MeSH
- Humans MeSH
- Lysophospholipids genetics metabolism MeSH
- RNA, Messenger genetics MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neovascularization, Pathologic genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Sphingosine analogs & derivatives genetics metabolism MeSH
- Signal Transduction * MeSH
- Transcriptome * MeSH
- Computational Biology methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Lysophospholipids MeSH
- RNA, Messenger MeSH
- Sphingosine MeSH
- sphingosine 1-phosphate MeSH Browser