Most cited article - PubMed ID 30753095
Regulation and role of endoglin in cholesterol-induced endothelial and vascular dysfunction in vivo and in vitro
Acute manifestations of ischemic heart disease are among the most serious and fatal consequences of atherosclerotic processes. In this study, we hypothesized that a soluble proprotein convertase subtilisin/kexin type 9 (PCSK9), soluble bone morphogenetic protein 4 (BMP-4), soluble E-selectin (sE-selectin), soluble endoglin (sENG) and soluble endocan (Endocan) would differ from healthy controls in myocardial infarction (MI) patients admitted to the hospital without any previous history of cardiovascular disease and with no cardioprotective drugs taken before admission. The study was conducted using a cross-sectional design. We analyzed data from 79 patients (mean age 54.1 ± 8.9, 18% of women) admitted for the first manifestation of MI and with no history of cardioprotective treatment use before the event. As a control group, we analyzed 17 age-matched healthy volunteers (mean age 51.5 ± 8.6, 47% of women). In addition to routinely obtaining clinical and laboratory data, we analyzed plasma concentrations of the aforementioned biomarkers using ELISA and Luminex analyses. Patients with MI did not differ from healthy controls in total cholesterol, LDL, non-HDL, and triglyceride levels. PCSK9, BMP-4, and sE-selectin levels did not differ significantly between the MI and the control group. Patients with MI had significantly higher sENG and Endocan levels than the control group. In addition, levels of sENG were significantly higher in patients with higher body mass index (BMI) and in smokers. We demonstrated that sENG could serve as a biomarker reflecting endothelial dysfunction in MI patients without prior treatment for cardiovascular risk factors.
- Keywords
- myocardial infarction, soluble endocan., soluble endoglin,
- MeSH
- Biomarkers blood MeSH
- Endothelium, Vascular * physiopathology pathology metabolism MeSH
- Adult MeSH
- E-Selectin blood MeSH
- Endoglin * blood MeSH
- Myocardial Infarction * blood pathology physiopathology MeSH
- Bone Morphogenetic Protein 4 blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Proteins blood MeSH
- Proprotein Convertase 9 blood MeSH
- Proteoglycans blood MeSH
- Cross-Sectional Studies MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
- Names of Substances
- Biomarkers MeSH
- BMP4 protein, human MeSH Browser
- E-Selectin MeSH
- Endoglin * MeSH
- ENG protein, human MeSH Browser
- ESM1 protein, human MeSH Browser
- Bone Morphogenetic Protein 4 MeSH
- Neoplasm Proteins MeSH
- PCSK9 protein, human MeSH Browser
- Proprotein Convertase 9 MeSH
- Proteoglycans MeSH
- SELE protein, human MeSH Browser
Age-related macular degeneration (AMD) is a progressive chronic disease causing visual impairment or central vision loss in the elderly. We hypothesized that successful rheopheresis would be associated with positive changes in soluble endoglin (sENG), PSCK9, alpha-2-macroglobulin (A2M), and hs-CRP levels. 31 elderly patients with the dry form of AMD, treated with rheopheresis with a follow-up period of at least 5 years and an average age of 68 ± 4 years, were evaluated. Each treated patient received a series of 8 procedures in 10 weeks and, after the 2-year period, another 2 procedures within 1 week. Then, the patients were followed up every 6 months and divided into the successfully treated and therapeutic failure group according to best-corrected visual acuity (BCVA), size of the drusen area, and the drusenoid pigment epithelium detachment (DPED). Based on the ophthalmological assessment, rheopheresis treatment was successful in 73% of AMD patients. The therapy was associated with a significant decrease in total cholesterol, LDL-C, HDL-C, apoprotein B, lipoprotein (a) levels, and rheologically important parameters, irrespective of the therapy's success or failure. The success of rheopheresis therapy was exclusively related to a significant decrease in sENG and A2M levels. Over the long term, rheopheresis prevented the decline of BCVA, reduced the DPED and area of macular drusen, and improved the preservation of an intact photoreceptor ellipsoid zone in most patients. Moreover, we showed for the first time that sENG and A2M could be potentially sensitive biomarkers of successful rheopheresis procedure, irrespective of lipid parameters changes.
- Keywords
- Age-related macular degeneration, Alpha-2-macroglobulin, Rheopheresis, Soluble endoglin,
- MeSH
- Biomarkers * blood MeSH
- Endoglin * blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Macular Degeneration * therapy blood MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Visual Acuity MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers * MeSH
- Endoglin * MeSH
Endoglin (Eng) is a co-receptor of the transforming growth factor β superfamily playing an important role in endothelial dysfunction. TRC105 (carotuximab) is a monoclonal antibody that blocks Eng and its downstream Smad signaling pathway. Here we have investigated for the first time the effects of TRC105 treatment on the development of endothelial dysfunction induced by 7-ketocholesterol (7K) or high glucose (HG), focusing on Eng expression, signaling, and function. In the hypercholesterolemia study, human aortic endothelial cells (HAoECs) were treated with TRC105 (300 μg/ml) for 1 h, followed by the addition of 7K (10 μg/ml) for another 12 h. In the hyperglycemia study, HAoECs were exposed to HG (45 mM) for 60 h, followed by the addition of TRC105 for another 12 h, and cells treated with 5mM glucose and 40 mM mannitol served as control. Protein levels, adhesion, and transmigration of monocytes were assessed by flow cytometry, mRNA expression was measured by qRT-PCR. 7K and HG treatment increased protein levels of NF-κB and Eng and adhesion and transmigration of monocytes through HAoECs monolayer. TRC105 pretreatment reduced the 7K- or HG-induced Eng protein levels and pSmad1/5 and pSmad2/3 signaling. Despite increased protein levels of P-selectin and VCAM-1, TRC105 mediated blockage of Eng prevented 7K- and HG-induced adhesion and transmigration of monocytes through endothelial monolayers. These results suggest that TRC105-mediated Eng blockage can counteract the hypercholesterolemia- and hyperglycemia-induced endothelial dysfunction in HAoECs, suggesting that Eng might be a potential therapeutic target in disorders associated with elevated cholesterol and glucose levels.
- Keywords
- 7-ketocholesterol, TRC105, endoglin, endothelial dysfunction, high glucose,
- Publication type
- Journal Article MeSH
Sepsis is a clinical syndrome characterized by a dysregulated response to infection. It represents a leading cause of mortality in ICU patients worldwide. Although sepsis is in the point of interest of research for several decades, its clinical management and patient survival are improving slowly. Monitoring of the biomarkers and their combinations could help in early diagnosis, estimation of prognosis and patient's stratification and response to the treatment. Circulating soluble endoglin (sEng) is the cleaved extracellular part of transmembrane glycoprotein endoglin. As a biomarker, sEng has been tested in several pathologic conditions where its elevation was associated with endothelial dysfunction. In this study we have tested the ability of sEng to predict mortality and its correlation with other clinical characteristics in the cohort of septic shock patients (n = 37) and patients with severe COVID-19 (n = 40). In patients with COVID-19 sEng did not predict mortality or correlate with markers of organ dysfunction. In contrast, in septic shock the level of sEng was significantly higher in patients with early mortality (p = 0.019; AUC = 0.801). Moreover, sEng levels correlated with signs of circulatory failure (required dose of noradrenalin and lactate levels; p = 0.002 and 0.016, respectively). The predominant clinical problem in patients with COVID-19 was ARDS, and although they often showed signs of other organ dysfunction, circulatory failure was exceptional. This potentially explains the difference between sEng levels in COVID-19 and septic shock. In conclusion, we have confirmed that sEng may reflect the extent of the circulatory failure in septic shock patients and thus could be potentially used for the early identification of patients with the highest degree of endothelial dysfunction who would benefit from endothelium-targeted individualized therapy.
- Keywords
- COVID-19, biomarker, endoglin, endothelial dysfunction, mortality, sepsis, shock,
- Publication type
- Journal Article MeSH
Endoglin is a 180 kDa transmembrane glycoprotein that was demonstrated to be present in two different endoglin forms, namely membrane endoglin (Eng) and soluble endoglin (sEng). Increased sEng levels in the circulation have been detected in atherosclerosis, arterial hypertension, and type II diabetes mellitus. Moreover, sEng was shown to aggravate endothelial dysfunction when combined with a high-fat diet, suggesting it might be a risk factor for the development of endothelial dysfunction in combination with other risk factors. Therefore, this study hypothesized that high sEng levels exposure for 12 months combined with aging (an essential risk factor of atherosclerosis development) would aggravate vascular function in mouse aorta. Male transgenic mice with high levels of human sEng in plasma (Sol-Eng+) and their age-matched male transgenic littermates that do not develop high soluble endoglin (Control) on a chow diet were used. The aging process was initiated to contribute to endothelial dysfunction/atherosclerosis development, and it lasted 12 months. Wire myograph analysis showed impairment contractility in the Sol-Eng+ group when compared to the control group after KCl and PGF2α administration. Endothelium-dependent responsiveness to Ach was not significantly different between these groups. Western blot analysis revealed significantly decreased protein expression of Eng, p-eNOS, and ID1 expression in the Sol-Eng+ group compared to the control group suggesting reduced Eng signaling. In conclusion, we demonstrated for the first time that long-term exposure to high levels of sEng during aging results in alteration of vasoconstriction properties of the aorta, reduced eNOS phosphorylation, decreased Eng expression, and altered Eng signaling. These findings suggest that sEng can be considered a risk factor for the development of vascular dysfunction during aging and a potential therapeutical target for pharmacological intervention.
- Keywords
- endoglin signaling, mice, soluble endoglin, vascular function,
- Publication type
- Journal Article MeSH
Membrane endoglin (Eng, CD105) is a transmembrane glycoprotein essential for the proper function of vascular endothelium. It might be cleaved by matrix metalloproteinases to form soluble endoglin (sEng), which is released into the circulation. Metabolic syndrome comprises conditions/symptoms that usually coincide (endothelial dysfunction, arterial hypertension, hyperglycemia, obesity-related insulin resistance, and hypercholesterolemia), and are considered risk factors for cardiometabolic disorders such as atherosclerosis, type II diabetes mellitus, and liver disorders. The purpose of this review is to highlight current knowledge about the role of Eng and sEng in the disorders mentioned above, in vivo and in vitro extent, where we can find a wide range of contradictory results. We propose that reduced Eng expression is a hallmark of endothelial dysfunction development in chronic pathologies related to metabolic syndrome. Eng expression is also essential for leukocyte transmigration and acute inflammation, suggesting that Eng is crucial for the regulation of endothelial function during the acute phase of vascular defense reaction to harmful conditions. sEng was shown to be a circulating biomarker of preeclampsia, and we propose that it might be a biomarker of metabolic syndrome-related symptoms and pathologies, including hypercholesterolemia, hyperglycemia, arterial hypertension, and diabetes mellitus as well, despite the fact that some contradictory findings have been reported. Besides, sEng can participate in the development of endothelial dysfunction and promote the development of arterial hypertension, suggesting that high levels of sEng promote metabolic syndrome symptoms and complications. Therefore, we suggest that the treatment of metabolic syndrome should take into account the importance of Eng in the endothelial function and levels of sEng as a biomarker and risk factor of related pathologies.
- Keywords
- Endoglin, Endothelial dysfunction, Hyperglycemia, Metabolic syndrome, Soluble endoglin,
- MeSH
- Atherosclerosis metabolism pathology MeSH
- Biomarkers metabolism MeSH
- Cell Membrane metabolism MeSH
- Diabetes Mellitus, Type 2 metabolism pathology MeSH
- Endoglin chemistry metabolism MeSH
- Gene Expression MeSH
- Cardiovascular Diseases metabolism pathology MeSH
- Humans MeSH
- Metabolic Syndrome metabolism pathology MeSH
- Nitric Oxide Synthase Type III metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biomarkers MeSH
- Endoglin MeSH
- Nitric Oxide Synthase Type III MeSH
BACKGROUND: Lipoprotein apheresis (LA) is considered as an add-on therapy for patients with familial hypercholesterolemia (FH). We aimed to analyze the data collected in the last 15 years from FH patients treated with LA, to elucidate the benefit of this procedure with respect to plasma lipids, biomarkers of inflammation, and endothelial dysfunction and soluble endoglin. RESULTS: 14 patients (10 heterozygous FH patients (HeFH), 4 homozygous FH patients (HoFH)) were treated by long-term lipoprotein apheresis. Lipid levels were examined, and ELISA detected biomarkers of inflammation and soluble endoglin. Paired tests were used for intergroup comparisons, and a linear regression model served to estimate the influence of the number of days patients were treated with LA on the studied parameters. LA treatment was associated with a significant decrease of total cholesterol (TC), LDL-C, HDL-C, and apoB, in both HeFH and HoFH patients, after single apheresis and in a long-term period during the monitored interval of 15 years. Biomarkers of inflammation and endothelial dysfunction were reduced for soluble endoglin, hsCRP, and MCP-1, and sP-selectin after each procedure in some HeFH and HoFH patients. CONCLUSIONS: LA treatment up to 15 years, reduced cholesterol levels, levels of biomarkers related to endothelial dysfunction, and inflammation not only after each procedure but also in the long-term evaluation in FH patients. We propose that long-term LA treatment improves lipid profile and endothelial dysfunction in familial hypercholesterolemia patients, suggesting a promising improvement in cardiovascular prognosis in most FH patients.
- Keywords
- Familial hypercholesterolemia, Inflammation, Lipids, Lipoprotein apheresis, Soluble endoglin,
- MeSH
- Biomarkers MeSH
- Endoglin MeSH
- Hyperlipoproteinemia Type II * genetics therapy MeSH
- Humans MeSH
- Lipoproteins MeSH
- Blood Component Removal * MeSH
- Inflammation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Endoglin MeSH
- Lipoproteins MeSH
Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis with inflammation and fibrosis. Membrane endoglin (Eng) expression is shown to participate in fibrosis, and plasma concentrations of soluble endoglin (sEng) are increased in patients with hypercholesterolemia and type 2 diabetes mellitus. We hypothesize that NASH increases both hepatic Eng expression and sEng in blood and that high levels of sEng modulate cholesterol and bile acid (BA) metabolism and affect NASH progression. Three-month-old transgenic male mice overexpressing human sEng and their wild type littermates are fed for six months with either a high-saturated fat, high-fructose high-cholesterol (FFC) diet or a chow diet. Evaluation of NASH, Liquid chromatography-mass spectrometry (LC/MS) analysis of BA, hepatic expression of Eng, inflammation, fibrosis markers, enzymes and transporters involved in hepatic cholesterol and BA metabolism are assessed using Real-Time Quantitative Reverse Transcription Polymerase Chain reaction (qRT-PCR) and Western blot. The FFC diet significantly increases mouse sEng levels and increases hepatic expression of Eng. High levels of human sEng results in increased hepatic deposition of cholesterol due to reduced conversion into BA, as well as redirects the metabolism of triglycerides (TAG) to its accumulation in the liver, via reduced TAG elimination by β-oxidation combined with reduced hepatic efflux. We propose that sEng might be a biomarker of NASH development, and the presence of high levels of sEng might support NASH aggravation by impairing the essential defensive mechanism protecting NASH liver against excessive TAG and cholesterol accumulation, suggesting the importance of high sEng levels in patients prone to develop NASH.
- Keywords
- FFC diet, NASH, bile acids, bile production, cholesterol, endoglin,
- MeSH
- Alkaline Phosphatase metabolism MeSH
- Aspartate Aminotransferases metabolism MeSH
- Biomarkers blood metabolism MeSH
- Models, Biological MeSH
- Cholesterol blood metabolism MeSH
- Diet, High-Fat MeSH
- Endoglin blood metabolism MeSH
- Fructose MeSH
- Liver Cirrhosis blood complications pathology MeSH
- Liver metabolism pathology MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Non-alcoholic Fatty Liver Disease blood complications metabolism MeSH
- Oxidative Stress MeSH
- Solubility MeSH
- Triglycerides metabolism MeSH
- Inflammation pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Alkaline Phosphatase MeSH
- Aspartate Aminotransferases MeSH
- Biomarkers MeSH
- Cholesterol MeSH
- Endoglin MeSH
- Fructose MeSH
- Triglycerides MeSH