Nejvíce citovaný článek - PubMed ID 33002526
Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
- MeSH
- ligandy MeSH
- steroidní receptory * metabolismus MeSH
- střeva MeSH
- transportní proteiny MeSH
- xenobiotika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ligandy MeSH
- steroidní receptory * MeSH
- transportní proteiny MeSH
- xenobiotika MeSH
Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.
- Klíčová slova
- aryl hydrocarbon receptor, indole derivatives, microbiome, mimic mixtures, tryptophan metabolites,
- MeSH
- cytochrom P-450 CYP1A1 genetika metabolismus MeSH
- indoly metabolismus farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- messenger RNA metabolismus MeSH
- propionáty MeSH
- pyruváty MeSH
- receptory aromatických uhlovodíků * metabolismus MeSH
- střeva MeSH
- tryptofan * metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytochrom P-450 CYP1A1 MeSH
- indoly MeSH
- ligandy MeSH
- messenger RNA MeSH
- propionáty MeSH
- pyruváty MeSH
- receptory aromatických uhlovodíků * MeSH
- tryptofan * MeSH
Gastrointestinal microbes respond to biochemical metabolites that coordinate their behaviors. Here, we demonstrate that bacterial indole functions as a multifactorial mitigator of Klebsiella grimontii and Klebsiella oxytoca pathogenicity. These closely related microbes produce the enterotoxins tilimycin and tilivalline; cytotoxin-producing strains are the causative agent of antibiotic-associated hemorrhagic colitis and have been associated with necrotizing enterocolitis of premature infants. We demonstrate that carbohydrates induce cytotoxin synthesis while concurrently repressing indole biosynthesis. Conversely, indole represses cytotoxin production. In both cases, the alterations stemmed from differential transcription of npsA and npsB, key genes involved in tilimycin biosynthesis. Indole also enhances conversion of tilimycin to tilivalline, an indole analog with reduced cytotoxicity. In this context, we established that tilivalline, but not tilimycin, is a strong agonist of pregnane X receptor (PXR), a master regulator of xenobiotic detoxification and intestinal inflammation. Tilivalline binding upregulated PXR-responsive detoxifying genes and inhibited tubulin-directed toxicity. Bacterial indole, therefore, acts in a multifunctional manner to mitigate cytotoxicity by Klebsiella spp.: suppression of toxin production, enhanced conversion of tilimycin to tilivalline, and activation of PXR. IMPORTANCE The human gut harbors a complex community of microbes, including several species and strains that could be commensals or pathogens depending on context. The specific environmental conditions under which a resident microbe changes its relationship with a host and adopts pathogenic behaviors, in many cases, remain poorly understood. Here, we describe a novel communication network involving the regulation of K. grimontii and K. oxytoca enterotoxicity. Bacterial indole was identified as a central modulator of these colitogenic microbes by suppressing bacterial toxin (tilimycin) synthesis and converting tilimycin to tilivalline while simultaneously activating a host receptor, PXR, as a means of mitigating tissue cytotoxicity. On the other hand, fermentable carbohydrates were found to inhibit indole biosynthesis and enhance toxin production. This integrated network involving microbial, host, and metabolic factors provides a contextual framework to better understand K. oxytoca complex pathogenicity.
- Klíčová slova
- Klebsiella oxytoca complex, cytotoxin, indole, intestinal inflammation, pregnane X receptor,
- MeSH
- cytotoxiny metabolismus MeSH
- enterotoxiny metabolismus MeSH
- indoly metabolismus MeSH
- infekce bakteriemi rodu Klebsiella * mikrobiologie MeSH
- Klebsiella oxytoca genetika metabolismus MeSH
- lidé MeSH
- novorozenec MeSH
- pseudomembranózní enterokolitida * mikrobiologie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- cytotoxiny MeSH
- enterotoxiny MeSH
- indoly MeSH
National screening programs use dried blood specimens to detect metabolic disorders or aberrant protein functions that are not clinically evident in the neonatal period. Similarly, gut microbiota metabolites and immunological acute-phase proteins may reveal latent immune aberrations. Microbial metabolites interact with xenobiotic receptors (i.e., aryl hydrocarbon and pregnane-X) to maintain gastrointestinal tissue health, supported by acute-phase proteins, functioning as sensors of microbial immunomodulation and homeostasis. The delivery (vaginal or cesarean section) shapes the microbial colonization, which substantially modulates both the immune system's response and mucosal homeostasis. This study profiled microbial metabolites of the kynurenine and tryptophan pathway and acute-phase proteins in 134 neonatal dried blood specimens. We newly established neonatal blood levels of microbial xenobiotic receptors ligands (i.e., indole-3-aldehyde, indole-3-butyric acid, and indole-3-acetamide) on the second day of life. Furthermore, we observed diverse microbial metabolic profiles in neonates born vaginally and via cesarean section, potentially due to microbial immunomodulatory influence. In summary, these findings suggest the supportive role of human gut microbiota in developing and maintaining immune system homeostasis.
- Klíčová slova
- acute-phase proteins, dried blood specimens, human gut microbiota, immunomodulation, tryptophan and kynurenine metabolism,
- Publikační typ
- časopisecké články MeSH
Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.
- Klíčová slova
- Intestinal inflammation, Microbial mimics, Pregnane X receptor, Tryptophan catabolites,
- MeSH
- adenokarcinom MeSH
- antiflogistika chemie farmakologie MeSH
- hepatocyty MeSH
- indoly chemie farmakologie MeSH
- játra MeSH
- konformace proteinů MeSH
- lidé středního věku MeSH
- lidé MeSH
- molekulární mimikry MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory tračníku MeSH
- pregnanový X receptor chemie metabolismus MeSH
- racionální návrh léčiv MeSH
- střeva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antiflogistika MeSH
- indoly MeSH
- Nr1i2 protein, mouse MeSH Prohlížeč
- pregnanový X receptor MeSH