Most cited article - PubMed ID 34758356
Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation
Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.
- Keywords
- hormone receptor, juvenile hormone, ligand-binding pocket, metamorphosis, oogenesis,
- MeSH
- Insecta metabolism MeSH
- Juvenile Hormones * metabolism MeSH
- Larva MeSH
- Ligands MeSH
- Methoprene * metabolism MeSH
- Peptides pharmacology MeSH
- Reproduction MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Juvenile Hormones * MeSH
- Ligands MeSH
- Methoprene * MeSH
- Peptides MeSH
Juvenile hormone (JH) signalling, via its receptor Methoprene-tolerant (Met), controls metamorphosis and reproduction in insects. Met belongs to a superfamily of transcription factors containing the basic Helix Loop Helix (bHLH) and Per Arnt Sim (PAS) domains. Since its discovery in 1986, Met has been characterized in several insect species. However, in spite of the importance as vectors of Chagas disease, our knowledge on the role of Met in JH signalling in Triatominae is limited. In this study, we cloned and sequenced the Dipetalogaster maxima Met transcript (DmaxMet). Molecular modelling was used to build the structure of Met and identify the JH binding site. To further understand the role of the JH receptor during oogenesis, transcript levels were evaluated in two main target organs of JH, fat body and ovary. Functional studies using Met RNAi revealed significant decreases of transcripts for vitellogenin (Vg) and lipophorin (Lp), as well as their receptors. Lp and Vg protein amounts in fat body, as well as Vg in hemolymph were also decreased, and ovarian development was impaired. Overall, these studies provide additional molecular insights on the roles of JH signalling in oogenesis in Triatominae; and therefore are relevant for the epidemiology of Chagas´ disease.
- MeSH
- Juvenile Hormones metabolism MeSH
- Methoprene * metabolism MeSH
- Oogenesis genetics MeSH
- Triatominae * MeSH
- Vitellogenins MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Juvenile Hormones MeSH
- Methoprene * MeSH
- Vitellogenins MeSH