Nejvíce citovaný článek - PubMed ID 35032533
Geographic and taxonomic trends of rising biological invasion costs
Biological invasions threaten global biodiversity, human well-being and economies. Many regional and taxonomic syntheses of monetary costs have been produced recently but with important knowledge gaps owing to uneven geographic and taxonomic research intensity. Here we combine species distribution models, macroeconomic data and the InvaCost database to produce the highest resolution spatio-temporal cost estimates currently available to bridge these gaps. From a subset of 162 invasive species with 'highly reliable' documented costs at the national level, our interpolation focuses on countries that have not reported any costs despite the known presence of invasive species. This analysis demonstrates a substantial underestimation, with global costs potentially estimated to be 1,646% higher for these species than previously recorded. This discrepancy was uneven geographically and taxonomically, respectively peaking in Europe and for plants. Our results showed that damage costs were primarily driven by gross domestic product, human population size, agricultural area and environmental suitability, whereas management expenditure correlated with gross domestic product and agriculture areas. We also found a lag time for damage costs of 46 years, but management spending was not delayed. The methodological predictive approach of this study provides a more complete view of the economic dimensions of biological invasions and narrows the global disparity in invasion cost reporting.
- MeSH
- biodiverzita * MeSH
- zachování přírodních zdrojů * ekonomika MeSH
- zavlečené druhy * ekonomika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
A nexus of natural and human variables mediate the success of non-native species that threaten global biodiversity and ecological stability. However, the relative importance and interplays among relevant factors has not been holistically approached. To identify spatial differences and potential connections in relevant natural and human drivers, we analyzed the number of non-native species established in European countries using a newly collated database of established non-native species. We employ a series of broadscale national predictors classified into 'research', 'economy', 'environment & culture', and 'land-use' to predict successful establishment. Our null models, which assume the distribution of non-native species mirrors that of each predictor, accurately predicted non-native species numbers across European countries. However, a few countries were identified as outliers, having significantly over- or underrepresented non-native species numbers based on adjusted quasi-Poisson distribution quantiles. A network analysis of non-native species compositions identified these regions to be central hubs (e.g. Germany, France, and Switzerland), but also highlighted distinct spatial similarities across European countries. Combinations of the predictors 'economy', 'research', and 'environment & culture' explained the largest shares of differences in the number of established non-native species among European countries as well as their reporting rates over time. Individual drivers alone were insufficient to wholly explain national differences, whereas interacting driver categories ultimately accounted for the largest shares of variance. This analysis demonstrates the breadth of predictors that mediate successful establishment, and particularly highlights the relevance of overlooked historical-cultural facets affecting biological invasions.
- Klíčová slova
- Biological invasions, Economy, Environmental change, Europe, Society and culture,
- MeSH
- biodiverzita * MeSH
- ekosystém MeSH
- lidé MeSH
- zachování přírodních zdrojů * MeSH
- zavlečené druhy * statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.
- Klíčová slova
- InvaCost, economic impacts, environmental management, guiding policy, invasive alien species,
- Publikační typ
- časopisecké články MeSH
Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion US$ between 1986 and 2020, divided split into 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.
- MeSH
- ekosystém * MeSH
- lidé MeSH
- obojživelníci * MeSH
- plazi * MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Severní Amerika MeSH