Nejvíce citovaný článek - PubMed ID 35751364
Noninvasive Stimulation of Peripheral Nerves using Temporally-Interfering Electrical Fields
Temporal interference (TI) is a method of non-invasive brain stimulation using transcutaneous electrodes which allows the targeting and modulation of deeper brain structures, not normally associated with non-invasive simulation, while avoiding unwanted stimulation of shallower cortical structures. The properties of TI have been previously demonstrated, however, the problem of decoupling stimulation focality from stimulation intensity has not yet been well addressed. In this paper, we provide a possible novel solution, multipolar TI (mTI), which allows increased independent control over both the size of the stimulated region and the stimulation intensity. The mTI method uses multiple carrier frequencies to create multiple overlapping amplitude-modulated envelopes, rather than using one envelope as in standard TI. The study presents an explanation of the concept of mTI along with experimental data gathered from Rhesus macaques and mice. We improved the focality at depth in anesthetized mice and monkeys, and using the new focality in awake monkeys, evoked targeted activity at depth in the superior colliculus. The mTI method could be an interesting and potentially useful new tool alongside other forms of non-invasive brain stimulation. Teaser Multipolar Temporal Interference Stimulation can produce a more focal brain stimulation at depth compared to Temporal Interference.
- Klíčová slova
- Focality, Multipolar, Non-Human Primate, Stimulation, Temporal Interference, Temporally Interfering Electric Fields,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Peripheral nerve stimulation is used in both clinical and fundamental research for therapy and exploration. At present, non-invasive peripheral nerve stimulation still lacks the penetration depth to reach deep nerve targets and the stimulation focality to offer selectivity. It is therefore rarely employed as the primary selected nerve stimulation method. We have previously demonstrated that a new stimulation technique, temporal interference stimulation, can overcome depth and focality issues. METHODS: Here, we implement a novel form of temporal interference, bilateral temporal interference stimulation, for bilateral hypoglossal nerve stimulation in rodents and humans. Pairs of electrodes are placed alongside both hypoglossal nerves to stimulate them synchronously and thus decrease the stimulation amplitude required to activate hypoglossal-nerve-controlled tongue movement. RESULTS: Comparing bilateral temporal interference stimulation with unilateral temporal interference stimulation, we show that it can elicit the same behavioral and electrophysiological responses at a reduced stimulation amplitude. Traditional transcutaneous stimulation evokes no response with equivalent amplitudes of stimulation. CONCLUSIONS: During first-in-man studies, temporal interference stimulation was found to be well-tolerated, and to clinically reduce apnea-hypopnea events in a subgroup of female patients with obstructive sleep apnea. These results suggest a high clinical potential for the use of temporal interference in the treatment of obstructive sleep apnea and other diseases as a safe, effective, and patient-friendly approach. TRIAL REGISTRATION: The protocol was conducted with the agreement of the International Conference on Harmonisation Good Clinical Practice (ICH GCP), applicable United States Code of Federal Regulations (CFR) and followed the approved BRANY IRB File # 22-02-636-1279.
- Klíčová slova
- Hypoglossal nerve, Obstructive sleep apnea, Peripheral nerve stimulation, Temporal interference,
- Publikační typ
- časopisecké články MeSH