Nejvíce citovaný článek - PubMed ID 37339742
Evidence of cospeciation between termites and their gut bacteria on a geological time scale
Termites digest wood using Carbohydrate-Active Enzymes (CAZymes) produced by gut bacteria with whom they have cospeciated at geological timescales. Whether CAZymes were encoded in the genomes of their ancestor's gut bacteria and transmitted to modern termites or acquired more recently from bacteria not associated with termites is unclear. We used gut metagenomes from 195 termites and one Cryptocercus, the sister group of termites, to investigate the evolution of termite gut bacterial CAZymes. We found 420 termite-specific clusters in 81 bacterial CAZyme gene trees, including 404 clusters showing strong cophylogenetic patterns with termites. Of the 420 clusters, 131 included at least one bacterial CAZyme sequence associated with Cryptocercus or Mastotermes, the sister group of all other termites. Our results suggest many bacterial CAZymes have been encoded in the genomes of termite gut bacteria since termite origin, indicating termites rely upon many bacterial CAZymes endemic to their guts to digest wood.
- MeSH
- Bacteria * enzymologie genetika MeSH
- bakteriální proteiny metabolismus genetika MeSH
- fylogeneze * MeSH
- Isoptera * mikrobiologie enzymologie MeSH
- metabolismus sacharidů MeSH
- metagenom MeSH
- molekulární evoluce MeSH
- střevní mikroflóra MeSH
- švábi mikrobiologie enzymologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.
- MeSH
- fylogeneze * MeSH
- genom hmyzu MeSH
- genomika * metody MeSH
- Isoptera * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.
- Klíčová slova
- cophylogeny, endosymbionts, isoptera, metagenomics, vertical inheritance,
- MeSH
- Bacteria genetika MeSH
- fylogeneze MeSH
- Isoptera * MeSH
- savci MeSH
- střevní mikroflóra * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH