Nejvíce citovaný článek - PubMed ID 3769170
Cardiovascular diseases represent an economic burden for health systems accounting for substantial morbidity and mortality worldwide. Despite timely and costly efforts in drug development, the cardiovascular safety and efficacy of the drugs are not always fully achieved. These lead to the drugs' withdrawal with adverse cardiac effects from the market or in the late stages of drug development. There is a growing need for a cost-effective drug screening assay to rapidly detect potential acute drug cardiotoxicity. The Langendorff isolated heart perfusion technique, which provides cardiac hemodynamic parameters (e.g., contractile function and heart rate), has become a powerful approach in the early drug discovery phase to overcome drawbacks in the drug candidate's identification. However, traditional ex vivo retrograde heart perfusion methods consume a large volume of perfusate, which increases the cost and limits compound screening. An elegant and cost-effective alternative mode for ex vivo retrograde heart perfusion is the constant-flow with a recirculating circuit (CFCC), which allows assessment of cardiac function using a reduced perfusion volume while limiting adverse effects on the heart. Here, we provide evidence for cardiac parameters stability over time in this mode. Next, we demonstrate that our recycled ex vivo perfusion system and the traditional open one yield similar outputs on cardiac function under basal conditions and upon ?-adrenergic stimulation with isoproterenol. Subsequently, we validate the proof of concept of therapeutic agent screening using this efficient method. ?-blocker (i.e., propranolol) infusion in closed circulation countered the positive effects induced by isoproterenol stimulation on cardiac function. Keywords: Drug development, Drug screening, Cardiovascular safety, Langendorff method, Closed circulation.
An excessive increase in reactive oxygen species (ROS) levels is one of the main causes of mitochondrial dysfunction. However, when ROS levels are maintained in balance with antioxidant mechanisms, ROS fulfill the role of signaling molecules and modulate various physiological processes. Recent advances in mitochondrial bioenergetics research have revealed a significant interplay between mitochondrial peroxiredoxins (PRDXs) and monoamine oxidase-A (MAO-A) in regulating ROS levels. Both proteins are associated with hydrogen peroxide (H2O2), MAO-A as a producer and PRDXs as the primary antioxidant scavengers of H2O2. This review focuses on the currently available knowledge on the function of these proteins and their interaction, highlighting their importance in regulating oxidative damage, apoptosis, and metabolic adaptation in the heart. PRDXs not only scavenge excess H2O2, but also act as regulatory proteins, play an active role in redox signaling, and maintain mitochondrial membrane integrity. Overexpression of MAO-A is associated with increased oxidative damage, leading to mitochondrial dysfunction and subsequent progression of cardiovascular diseases (CVD), including ischemia/reperfusion injury and heart failure. Considering the central role of oxidative damage in the pathogenesis of many CVD, targeting PRDXs activation and MAO-A inhibition may offer new therapeutic strategies aimed at improving cardiac function under conditions of pathological load related to oxidative damage. Keywords: Mitochondria, Peroxiredoxin, Monoamine oxidase-A, Reactive oxygen species, Cardioprotective signaling.
- MeSH
- lidé MeSH
- monoaminoxidasa * metabolismus MeSH
- oxidační stres MeSH
- peroxiredoxiny * metabolismus MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- signální transdukce * MeSH
- srdeční mitochondrie metabolismus enzymologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- monoaminoxidasa * MeSH
- peroxiredoxiny * MeSH
- reaktivní formy kyslíku * MeSH
Application of knowledge about ischemic tolerance to clinic requires the solid understanding of mechanism of creation of this phenomenon. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. The main emphasis is devoted to the possibility of preparing full tolerance in the donor's body and its transfer to the patient in the form of activated blood plasma. Such plasma could be administered as soon as the patient is transported to the hospital and would take effect immediately after administration to the patient's bloodstream. One chapter is also devoted to anticonditioning, i.e. the possibility of preventing the activation of tolerance. Anticonditioning could be used to treat oncologic patients. We expect that this method could increase effectiveness of cancer treatment. Cross-tolerance with a wide range of diverse stressors gives us the courage to assume that activated plasma can significantly help with a wide range of pathological events.
- MeSH
- fyziologický stres * MeSH
- ischemický postconditioning * MeSH
- lidé MeSH
- přivykání k ischémii * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Aging attenuates cardiac tolerance to ischemia/reperfusion (I/R) associated with defects in protective cell signaling, however, the onset of this phenotype has not been completely investigated. This study aimed to compare changes in response to I/R and the effects of remote ischemic preconditioning (RIPC) in the hearts of younger adult (3 months) and mature adult (6 months) male Wistar rats, with changes in selected proteins of protective signaling. Langendorff-perfused hearts were exposed to 30 min I/120 min R without or with prior three cycles of RIPC (pressure cuff inflation/deflation on the hind limb). Infarct size (IS), incidence of ventricular arrhythmias and recovery of contractile function (LVDP) served as the end points. In both age groups, left ventricular tissue samples were collected prior to ischemia (baseline) and after I/R, in non-RIPC controls and in RIPC groups to detect selected pro-survival proteins (Western blot). Maturation did not affect post-ischemic recovery of heart function (Left Ventricular Developed Pressure, LVDP), however, it increased IS and arrhythmogenesis accompanied by decreased levels and activity of several pro-survival proteins and by higher levels of pro-apoptotic proteins in the hearts of elder animals. RIPC reduced the occurrence of reperfusion-induced ventricular arrhythmias, IS and contractile dysfunction in younger animals, and this was preserved in the mature adults. RIPC did not increase phosphorylated protein kinase B (p-Akt)/total Akt ratio, endothelial nitric oxide synthase (eNOS) and protein kinase Cε (PKCε) prior to ischemia but only after I/R, while phosphorylated glycogen synthase kinase-3β (GSK3β) was increased (inactivated) before and after ischemia in both age groups coupled with decreased levels of pro-apoptotic markers. We assume that resistance of rat heart to I/R injury starts to already decline during maturation, and that RIPC may represent a clinically relevant cardioprotective intervention in the elder population.
- Klíčová slova
- ischemia/reperfusion injury, maturation, protective cell signaling, remote ischemic preconditioning,
- MeSH
- fosforylace MeSH
- hemodynamika MeSH
- ischemické přivykání * MeSH
- kinasa glykogensynthasy 3beta genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- myokard metabolismus MeSH
- potkani Wistar MeSH
- proteinkinasa C-epsilon genetika metabolismus MeSH
- protoonkogenní proteiny c-akt genetika metabolismus MeSH
- reperfuzní poškození myokardu metabolismus patologie MeSH
- stárnutí MeSH
- synthasa oxidu dusnatého, typ III genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kinasa glykogensynthasy 3beta MeSH
- proteinkinasa C-epsilon MeSH
- protoonkogenní proteiny c-akt MeSH
- synthasa oxidu dusnatého, typ III MeSH
Cardiac surgery patients are now more risky in terms of age, comorbidities, and the need for complex procedures. It brings about reperfusion injury, which leads to dysfunction and/or loss of part of the myocardium. These groups of patients have a higher incidence of postoperative complications and mortality. One way of augmenting intraoperative myocardial protection is the phenomenon of myocardial conditioning, elicited with brief nonlethal episodes of ischaemia-reperfusion. In addition, drugs are being tested that mimic ischaemic conditioning. Such cardioprotective techniques are mainly focused on reperfusion injury, a complex response of the organism to the restoration of coronary blood flow in ischaemic tissue, which can lead to cell death. Extensive research over the last three decades has revealed the basic mechanisms of reperfusion injury and myocardial conditioning, suggesting its therapeutic potential. But despite the enormous efforts that have been expended in preclinical studies, almost all cardioprotective therapies have failed in the third phase of clinical trials. One reason is that evolutionary young cellular mechanisms of protection against oxygen handling are not very robust. Ischaemic conditioning, which is among these, is also limited by this. At present, the prevailing belief is that such options of treatment exist, but their full employment will not occur until subquestions and methodological issues with the transfer into clinical practice have been resolved.
- MeSH
- adjuvancia farmaceutická terapeutické užití MeSH
- ischemický postconditioning MeSH
- kardiochirurgické výkony * škodlivé účinky MeSH
- kardiotonika terapeutické užití MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adjuvancia farmaceutická MeSH
- kardiotonika MeSH
The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion.The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na(2)SeO(3) in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. The 10 day-old hearts were perfused (Langendorff); recovery of developed force (DF) was measured after 40 min of global ischemia. In acute experiments, 10 day-old hearts were perfused with selenium (75 nmol/l) before or after global ischemia. Sensitivity to isoproterenol (ISO, pD(50)) was assessed as a response of DF to increasing cumulative dose.Se supplementation elevated serum concentration of Se by 16%. Se increased ischemic tolerance (recovery of DF, 32.28 +/- 2.37 vs. 41.82 +/- 2.91%, P < 0.05). Similar results were obtained after acute administration of Se during post-ischemic reperfusion (32.28 +/- 2.37 vs. 49.73 +/- 4.40%, P < 0.01). The pre-ischemic treatment, however, attenuated the recovery (23.08 +/- 3.04 vs. 32.28 +/- 2.37%, P < 0.05). Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO. Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.
- MeSH
- časové faktory MeSH
- ischemická choroba srdeční farmakoterapie prevence a kontrola MeSH
- kontrakce myokardu účinky léků MeSH
- krysa rodu Rattus MeSH
- lipofuscin metabolismus MeSH
- oxid dusnatý krev MeSH
- perfuze MeSH
- potkani Wistar MeSH
- potravní doplňky MeSH
- reperfuzní poškození myokardu farmakoterapie prevence a kontrola MeSH
- selen krev farmakologie terapeutické užití MeSH
- srdce účinky léků MeSH
- těhotenství MeSH
- tělesná hmotnost účinky léků MeSH
- velikost orgánu účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipofuscin MeSH
- oxid dusnatý MeSH
- selen MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Different from clinical studies of diabetes mellitus (DM), experimental data reveal both, higher and lower vulnerability of the heart to ischemic injury. We have previously demonstrated an enhanced resistance to ischemia-induced arrhythmias in isolated rat hearts in the acute phase of DM. Our objectives were thus to extend our knowledge to the effects of DM of different duration on myocardial infarction, in conjunction with susceptibility to arrhythmias, in the in vivo model. DM was induced by streptozotocin (45 mg/kg, i.v.) and following 1 week (acute phase) and 8 weeks (chronic phase), anesthetized open-chest diabetic and age-matched control rats were subjected to 30-min regional ischemia (occlusion of LAD coronary artery) followed by 4-h reperfusion for the evaluation of the infarct size (tetrazolium staining). In the control rats, ventricular tachycardia (VT) represented 45.4% of total arrhythmias and occurred in 90% of the animals. In the acute phase of DM, arrhythmia profile was similar to that in the control animals, and the incidence and severity of arrhythmias were not enhanced. On the other hand, the size of infarct area normalized to the size of area at risk was significantly smaller in the diabetics than in the controls (47.2 +/- 2.8 vs. 70.2 +/- 2.1%, respectively; p < 0.05). In the chronic phase, only 17.7% of arrhythmias occurred as VT in 44% of the diabetics (p < 0.05 vs. controls). Severity of arrhythmias was also lower (arrhythmia score: 2.1 +/- 0.3 vs. 2.9 +/- 0.3 in the controls, respectively; p < 0.05). This effect was not due to a smaller infarct size, since the latter did not differ from that in the controls. IN CONCLUSION: diabetic rat hearts exhibit rather lower, than higher sensitivity to ischemia. In acute phase of DM, diabetic hearts are more resistant to irreversible cell damage, whereas in the chronic phase they exhibit reduced susceptibility to arrhythmias; these discrepancies might reflect different pathogenesis of arrhythmias and myocardial infarction.
- MeSH
- experimentální diabetes mellitus komplikace patofyziologie MeSH
- infarkt myokardu patofyziologie MeSH
- ischemická choroba srdeční patofyziologie MeSH
- krysa rodu Rattus MeSH
- náchylnost k nemoci MeSH
- potkani Wistar MeSH
- srdce patofyziologie MeSH
- srdeční arytmie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH