The U4 small nuclear RNA (snRNA) forms a duplex with the U6 snRNA and, together with U5 and ~30 proteins, is part of the U4/U6.U5 tri-snRNP complex, located at the core of the major spliceosome. Recently, recurrent de novo variants in the U4 RNA, transcribed from the RNU4-2 gene, and in at least two other RNU genes were discovered to cause neurodevelopmental disorder. We detected inherited and de novo heterozygous variants in RNU4-2 (n.18_19insA and n.56T>C) and in four out of the five RNU6 paralogues (n.55_56insG and n.56_57insG) in 135 individuals from 62 families with non-syndromic retinitis pigmentosa (RP), a rare form of hereditary blindness. We show that these variants are recurrent among RP families and invariably cluster in close proximity within the three-way junction (between stem-I, the 5' stem-loop and stem-II) of the U4/U6 duplex, affecting its natural conformation. Interestingly, this region binds to numerous splicing factors of the tri-snRNP complex including PRPF3, PRPF8 and PRPF31, previously associated with RP as well. The U4 and U6 variants identified seem to affect snRNP biogenesis, namely the U4/U6 di-snRNP, which is an assembly intermediate of the tri-snRNP. Based on the number of positive cases observed, deleterious variants in RNU4-2 and in RNU6 paralogues could be a significant cause of isolated or dominant RP, accounting for up to 1.2% of all undiagnosed RP cases. This study highlights the role of non-coding genes in rare Mendelian disorders and uncovers pleiotropy in RNU4-2, where different variants underlie neurodevelopmental disorder and RP.
- Klíčová slova
- hereditary disease, non-coding, retinitis pigmentosa, snRNA, spliceosome, splicing,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
IgA vasculitis (IgAV) is a pediatric disease with skin and systemic manifestations. Here, we conducted genome, transcriptome, and proteome-wide association studies in 2,170 IgAV cases and 5,928 controls, generated IgAV-specific maps of gene expression and splicing from blood of 255 pediatric cases, and reconstructed myeloid-specific regulatory networks to define disease master regulators modulated by the newly identified disease driver genes. We observed significant association at the HLA-DRB1 (OR=1.55, P=1.1×10-25) and fine-mapped specific amino-acid risk substitutions in DRβ1. We discovered two novel non-HLA loci: FCAR (OR=1.51, P=1.0×10-20) encoding a myeloid IgA receptor FcαR, and INPP5D (OR=1.34, P=2.2×10-9) encoding a known inhibitor of FcαR signaling. The FCAR risk locus co-localized with a cis-eQTL increasing FCAR expression; the risk alleles disrupted a PRDM1 binding motif within a myeloid enhancer of FCAR. Another risk locus was associated with a higher genetically predicted levels of plasma IL6R. The IL6R risk haplotype carried a missense variant contributing to accelerated cleavage of IL6R into a soluble form. Using systems biology approaches, we prioritized IgAV master regulators co-modulated by FCAR, INPP5D and IL6R in myeloid cells. We additionally identified 21 shared loci in a cross-phenotype analysis of IgAV with IgA nephropathy, including novel loci PAID4, WLS, and ANKRD55.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 17 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of genes involved in neurotransmission and neurodevelopment including SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, CRTC3, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, DPH1, GSDMB, MED24 and THRA in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance of BD polygenic risk scores across diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Spinal muscular atrophy (SMA) is a genetic disorder that causes progressive degeneration of lower motor neurons and the subsequent loss of muscle function throughout the body. It is the second most common recessive disorder in individuals of European descent and is present in all populations. Accurate tools exist for diagnosing SMA from genome sequencing data. However, there are no publicly available tools for GRCh38-aligned data from panel or exome sequencing assays which continue to be used as first line tests for neuromuscular disorders. This deficiency creates a critical gap in our ability to diagnose SMA in large existing rare disease cohorts, as well as newly sequenced exome and panel datasets. We therefore developed and extensively validated a new tool - SMA Finder - that can diagnose SMA not only in genome, but also exome and panel sequencing samples aligned to GRCh37, GRCh38, or T2T-CHM13. It works by evaluating aligned reads that overlap the c.840 position of SMN1 and SMN2 in order to detect the most common molecular causes of SMA. We applied SMA Finder to 16,626 exomes and 3,911 genomes from heterogeneous rare disease cohorts sequenced at the Broad Institute Center for Mendelian Genomics as well as 1,157 exomes and 8,762 panel sequencing samples from Tartu University Hospital. SMA Finder correctly identified all 16 known SMA cases and reported nine novel diagnoses which have since been confirmed by clinical testing, with another four novel diagnoses undergoing validation. Notably, out of the 29 total SMA positive cases, 23 had an initial clinical diagnosis of muscular dystrophy, congenital myasthenic syndrome, or myopathy. This underscored the frequency with which SMA can be misdiagnosed as other neuromuscular disorders and confirmed the utility of using SMA Finder to reanalyze phenotypically diverse neuromuscular disease cohorts. Finally, we evaluated SMA Finder on 198,868 individuals that had both exome and genome sequencing data within the UK Biobank (UKBB) and found that SMA Finder's overall false positive rate was less than 1 / 200,000 exome samples, and its positive predictive value (PPV) was 97%. We also observed 100% concordance between UKBB exome and genome calls. This analysis showed that, even though it is located within a segmental duplication, the most common causal variant for SMA can be detected with comparable accuracy to monogenic disease variants in non-repetitive regions. Additionally, the high PPV demonstrated by SMA Finder, the existence of treatment options for SMA in which early diagnosis is imperative for therapeutic benefit, as well as widespread availability of clinical confirmatory testing for SMA, warrants the addition of SMN1 to the ACMG list of genes with reportable secondary findings after genome and exome sequencing.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present phenopacket-store. Version 0.1.12 of phenopacket-store includes 4916 phenopackets representing 277 Mendelian and chromosomal diseases associated with 236 genes, and 2872 unique pathogenic alleles curated from 605 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
PURPOSE: To develop a deep learning tool for the automatic segmentation of T2-weighted intramedullary lesions in spinal cord injury (SCI). MATERIAL AND METHODS: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The data consisted of T2-weighted MRI acquired using different scanner manufacturers with heterogeneous image resolutions (isotropic/anisotropic), orientations (axial/sagittal), lesion etiologies (traumatic/ischemic/hemorrhagic) and lesions spread across the cervical, thoracic and lumbar spine. The segmentations from the proposed model were visually and quantitatively compared with other open-source baselines. Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual lesion masks and those obtained automatically with SCIseg predictions. RESULTS: MRI data from 191 SCI patients (mean age, 48.1 years ± 17.9 [SD]; 142 males) were used for model training and evaluation. SCIseg achieved the best segmentation performance for both the cord and lesions. There was no statistically significant difference between lesion length and maximal axial damage ratio computed from manually annotated lesions and those obtained using SCIseg. CONCLUSION: Automatic segmentation of intramedullary lesions commonly seen in SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model segments lesions across different etiologies, scanner manufacturers, and heterogeneous image resolutions. SCIseg is open-source and accessible through the Spinal Cord Toolbox.
- Klíčová slova
- Convolution Neural Networks (CNN), MR-Imaging, Segmentation, Spinal Cord, Supervised learning, Trauma,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
BACKGROUND: Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). METHODS: We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. RESULTS: Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). CONCLUSIONS: This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
BACKGROUND: Schizophrenia is associated with an increased risk of aggressive behaviour, which may partly be explained by illness-related changes in brain structure. However, previous studies have been limited by group-level analyses, small and selective samples of inpatients and long time lags between exposure and outcome. METHODS: This cross-sectional study pooled data from 20 sites participating in the international ENIGMA-Schizophrenia Working Group. Sites acquired T1-weighted and diffusion-weighted magnetic resonance imaging scans in a total of 2095 patients with schizophrenia and 2861 healthy controls. Measures of grey matter volume and white matter microstructural integrity were extracted from the scans using harmonised protocols. For each measure, normative modelling was used to calculate how much patients deviated (in z-scores) from healthy controls at the individual level. Ordinal regression models were used to estimate the associations of these deviations with concurrent aggressive behaviour (as odds ratios [ORs] with 99% confidence intervals [CIs]). Mediation analyses were performed for positive symptoms (i.e., delusions, hallucinations and disorganised thinking), impulse control and illness insight. Aggression and potential mediators were assessed with the Positive and Negative Syndrome Scale, Scale for the Assessment of Positive Symptoms or Brief Psychiatric Rating Scale. RESULTS: Aggressive behaviour was significantly associated with reductions in total cortical volume (OR [99% CI] = 0.88 [0.78, 0.98], p = .003) and global white matter integrity (OR [99% CI] = 0.72 [0.59, 0.88], p = 3.50 × 10-5) and additional reductions in dorsolateral prefrontal cortex volume (OR [99% CI] = 0.85 [0.74, 0.97], p =.002), inferior parietal lobule volume (OR [99% CI] = 0.76 [0.66, 0.87], p = 2.20 × 10-7) and internal capsule integrity (OR [99% CI] = 0.76 [0.63, 0.92], p = 2.90 × 10-4). Except for inferior parietal lobule volume, these associations were largely mediated by increased severity of positive symptoms and reduced impulse control. CONCLUSIONS: This study provides evidence that the co-occurrence of positive symptoms, poor impulse control and aggressive behaviour in schizophrenia has a neurobiological basis, which may inform the development of therapeutic interventions.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH