BD sensor Dotaz Zobrazit nápovědu
Pumping in vacuum chambers is part of the field of environmental electron microscopy. These chambers are separated from each other by a small-diameter aperture that creates a critical flow in the supersonic flow regime. The distribution of pressure and shock waves in the path of the primary electron beam passing through the differentially pumped chamber has a large influence on the quality of the resulting microscope image. As part of this research, an experimental chamber was constructed to map supersonic flow at low pressures. The shape of this chamber was designed using mathematical-physical analyses, which served not only as a basis for the design of its geometry, but especially for the correct choice of absolute and differential pressure sensors with respect to the cryogenic temperature generated in the supersonic flow. The mathematical and physical analyses presented here map the nature of the supersonic flow with large gradients of state variables at low pressures at the continuum mechanics boundary near the region of free molecule motion in which the Environmental Electron Microscope and its differentially pumped chamber operate, which has a significant impact on the resulting sharpness of the final image obtained by the microscope. The results of this work map the flow in and behind the Laval nozzle in the experimental chamber and are the initial basis that enabled the optimization of the design of the chamber based on Prandtl's theory for the possibility of fitting it with pressure probes in such a way that they can map the flow in and behind the Laval nozzle.
- Klíčová slova
- BD sensor, ESEM, Prandtl’s theory, differentially pumped chamber, mach number, static pressure, static probe,
- Publikační typ
- časopisecké články MeSH
There is limited information on the association between participants' clinical status or trajectories and missing data in electronic monitoring studies of bipolar disorder (BD). We collected self-ratings scales and sensor data in 145 adults with BD. Using a new metric, Missing Data Ratio (MDR), we assessed missing self-rating data and sensor data monitoring activity and sleep. Missing data were lowest for participants in the midst of a depressive episode, intermediate for participants with subsyndromal symptoms, and highest for participants who were euthymic. Over a mean ± SD follow-up of 246 ± 181 days, missing data remained unchanged for participants whose clinical status did not change throughout the study (i.e., those who entered the study in a depressive episode and did not improve, or those who entered the study euthymic and remained euthymic). Conversely, when participants' clinical status changed during the study (e.g., those who entered the study euthymic and experienced the occurrence of a depressive episode), missing data for self-rating scales increased, but not for sensor data. Overall missing data were associated with participants' clinical status and its changes, suggesting that these are not missing at random.
- MeSH
- bipolární porucha * epidemiologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladý dospělý MeSH
- zpráva o sobě MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure with minimal power consumption. In a single topology, the proposed filter can provide five standard filtering functions (low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current (CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is needed. The natural frequency of all filtering functions can be electronically controlled by a setting current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that require extremely low supply voltages and nano-watt power consumption. For the VM low-pass filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC CMOS technology.
- Klíčová slova
- differential difference transconductance amplifier, mixed-mode filter, operational transconductance amplifier, universal filter,
- Publikační typ
- časopisecké články MeSH