Chlorophyll content Dotaz Zobrazit nápovědu
Chlorophyll content in leaves is a convenient indicator of the physiological state of the plant following exposure to a stressor. In the present study, a pot experiment was carried out using two medicinal plant species - peppermint (Mentha X piperita L.) and common sage (Salvia officinalis L.) to determine the link between the chlorophyll content in the plant leaves and the exposure of the plants to nano-TiO2 either through the leaves (in suspension) or through the root system (in soil). Following the exposure, the shoots were analysed for the contents of Ti, Al, Ca, K, Mg, Mn, Na and chlorophyll. Significant decrease in chlorophyll content was observed in all but one of the nano-TiO2 treatments, the differences in the determined element content were mostly species-dependent: Ti exposure was found to be related to the decrease in the chlorophyll and Mn content in both species as well as to the decrease in Mg content in common sage.
- Klíčová slova
- Chlorophyll, Common sage, Medicinal plants, Nanoparticles, Peppermint, Stress,
- MeSH
- antioxidancia MeSH
- chlorofyl metabolismus MeSH
- kořeny rostlin MeSH
- léčivé rostliny metabolismus MeSH
- listy rostlin metabolismus MeSH
- máta peprná MeSH
- rostlinné extrakty MeSH
- šalvěj lékařská MeSH
- sodík analýza MeSH
- titan analýza farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- chlorofyl MeSH
- rostlinné extrakty MeSH
- sodík MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
The sustainable production of upland cotton, an economically important fiber crop, is threatened by changing environmental factors including high temperatures and low-soil water content. Both high heat and low-soil water can reduce net photosynthesis resulting in low fiber yields or poor fiber quality. Leaf chlorophyll content has a direct relationship with photosynthetic rate. Understanding how high heat and low-soil water affect chlorophyll content can identify opportunities for breeding improvement that will lead to sustainable fiber yields. A two-year field trial located in Maricopa Arizona measured leaf chlorophyll content, available soil water, ambient air temperatures, and cotton growth measurements collected by a high-clearance tractor equipped with proximal sensors. The results showed that low-soil water significantly increased leaf chlorophyll content, while high temperatures significantly reduced content. Structured equation modeling revealed that cotton may divert available resources to leaf area and chlorophyll content for the production of photosynthates during periods of high temperatures.
- Klíčová slova
- abiotic stress, leaf chlorophyll content, proximal sensing, upland cotton,
- Publikační typ
- časopisecké články MeSH
We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.
- Klíčová slova
- Algae, Energy transfer, Light harvesting, Photoprotection, Photosynthesis, Transient spectroscopy,
- MeSH
- anaerobióza MeSH
- časové faktory MeSH
- chlorofyl metabolismus MeSH
- fluorescenční spektrometrie MeSH
- fotochemické procesy * MeSH
- Heterokontophyta metabolismus MeSH
- karotenoidy metabolismus MeSH
- kinetika MeSH
- proteiny vázající chlorofyl metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- karotenoidy MeSH
- proteiny vázající chlorofyl MeSH
- světlosběrné proteinové komplexy MeSH
Pearl millet is a significant crop that is tolerant to abiotic stresses and is a staple food of arid regions. However, its underlying mechanisms of stress tolerance are not fully understood. Plant survival is regulated by the ability to perceive a stress signal and induce appropriate physiological changes. Here, we screened for genes regulating physiological changes such as chlorophyll content (CC) and relative water content (RWC) in response to abiotic stress by using "weighted gene coexpression network analysis" (WGCNA) and clustering changes in physiological traits, i.e., CC and RWC associated with gene expression. Genes' correlations with traits were defined in the form of modules, and different color names were used to denote a particular module. Modules are groups of genes with similar patterns of expression, which also tend to be functionally related and co-regulated. In WGCNA, the dark green module (7082 genes) showed a significant positive correlation with CC, and the black (1393 genes) module was negatively correlated with CC and RWC. Analysis of the module positively correlated with CC highlighted ribosome synthesis and plant hormone signaling as the most significant pathways. Potassium transporter 8 and monothiol glutaredoxin were reported as the topmost hub genes in the dark green module. In Clust analysis, 2987 genes were found to display a correlation with increasing CC and RWC. Furthermore, the pathway analysis of these clusters identified the ribosome and thermogenesis as positive regulators of RWC and CC, respectively. Our study provides novel insights into the molecular mechanisms regulating CC and RWC in pearl millet.
- Klíčová slova
- WGCNA, gene clustering, gene expression, module, pathways, pearl millet, relative water content,
- Publikační typ
- časopisecké články MeSH
A wide range of portable chlorophyll meters are increasingly being used to measure leaf chlorophyll content as an indicator of plant performance, providing reference data for remote sensing studies. We tested the effect of leaf anatomy on the relationship between optical assessments of chlorophyll (Chl) against biochemically determined Chl content as a reference. Optical Chl assessments included measurements taken by four chlorophyll meters: three transmittance-based (SPAD-502, Dualex-4 Scientific, and MultispeQ 2.0), one fluorescence-based (CCM-300), and vegetation indices calculated from the 400-2500 nm leaf reflectance acquired using an ASD FieldSpec and a contact plant probe. Three leaf types with different anatomy were included: dorsiventral laminar leaves, grass leaves, and needles. On laminar leaves, all instruments performed well for chlorophyll content estimation (R2 > 0.80, nRMSE < 15%), regardless of the variation in their specific internal structure (mesomorphic, scleromorphic, or scleromorphic with hypodermis), similarly to the performance of four reflectance indices (R2 > 0.90, nRMSE < 16%). For grasses, the model to predict chlorophyll content across multiple species had low performance with CCM-300 (R2 = 0.45, nRMSE = 11%) and failed for SPAD. For Norway spruce needles, the relation of CCM-300 values to chlorophyll content was also weak (R2 = 0.45, nRMSE = 11%). To improve the accuracy of data used for remote sensing algorithm development, we recommend calibration of chlorophyll meter measurements with biochemical assessments, especially for species with anatomy other than laminar dicot leaves. The take-home message is that portable chlorophyll meters perform well for laminar leaves and grasses with wider leaves, however, their accuracy is limited for conifer needles and narrow grass leaves. Species-specific calibrations are necessary to account for anatomical variations, and adjustments in sampling protocols may be required to improve measurement reliability.
- Klíčová slova
- Chlorophyll, Leaf pigments, Leaf structure, Leaf with hypodermis, Remote sensing, Vegetation index,
- MeSH
- chlorofyl * analýza metabolismus MeSH
- lipnicovité MeSH
- listy rostlin * anatomie a histologie chemie MeSH
- technologie dálkového snímání metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl * MeSH
Non-destructive assessment of chlorophyll content has recently been widely done by chlorophyll meters based on measurement of leaf transmittance (e.g. the SPAD-502 chlorophyll meter measures the leaf transmittance at 650 and 940 nm). However, the leaf transmittance depends not only on the content of chlorophylls but also on their distribution in leaves. The chlorophyll distribution within leaves is co-determined by chloroplast arrangement in cells that depends on light conditions. When tobacco leaves were exposed to a strong blue light (about 340 μmol of photons m⁻² s⁻¹), a very pronounced increase in the leaf transmittance was observed as chloroplasts migrated from face position (along cell walls perpendicular to the incident light) to side position (along cell walls parallel to the incoming light) and the SPAD reading decreased markedly. This effect was more pronounced in the leaves of young tobacco plants compared with old ones; the difference between SPAD values in face and side position reached even about 35%. It is shown how the chloroplast movement changes a relationship between the SPAD readings and real chlorophyll content. For an elimination of the chloroplast movement effect, it can be recommended to measure the SPAD values in leaves with a defined chloroplasts arrangement.
- MeSH
- chlorofyl metabolismus MeSH
- chloroplasty metabolismus MeSH
- listy rostlin metabolismus MeSH
- tabák metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
Leaf chlorophyll content is an important physiological parameter which can serve as an indicator of nutritional status, plant stress or senescence. Signals proportional to the chlorophyll content can be measured non-destructively with instruments detecting leaf transmittance (e.g., SPAD-502) or reflectance (e.g., showing normalized differential vegetation index, NDVI) in red and near infrared spectral regions. The measurements are based on the assumption that only chlorophylls absorb in the examined red regions. However, there is a question whether accumulation of other pigments (e.g., anthocyanins) could in some cases affect the chlorophyll meter readings. To answer this question, we cultivated tomato plants (Solanum lycopersicum L.) for a long time under low light conditions and then exposed them for several weeks (4 h a day) to high sunlight containing the UV-A spectral region. The senescent leaves of these plants evolved a high relative content of anthocyanins and visually revealed a distinct blue color. The SPAD and NDVI data were collected and the spectra of diffusive transmittance and reflectance of the leaves were measured using an integration sphere. The content of anthocyanins and chlorophylls was measured analytically. Our results show that SPAD and NDVI measurement can be significantly affected by the accumulated anthocyanins in the leaves with relatively high anthocyanin content. To describe theoretically this effect of anthocyanins, concepts of a specific absorbance and a leaf spectral polarity were developed. Corrective procedures of the chlorophyll meter readings for the anthocyanin contribution are suggested both for the transmittance and reflectance mode.
- MeSH
- algoritmy MeSH
- anthokyaniny analýza metabolismus MeSH
- chemické modely MeSH
- chlorofyl analýza metabolismus MeSH
- chloroplasty metabolismus MeSH
- listy rostlin metabolismus MeSH
- počítačová simulace MeSH
- Solanum lycopersicum chemie metabolismus účinky záření MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anthokyaniny MeSH
- chlorofyl MeSH
Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.
- Klíčová slova
- Carotenoid, Diatom, Emiliania huxleyi, Light-harvesting complex, Photoprotection, TR-EPR,
- MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- elektronová paramagnetická rezonance MeSH
- přenos energie MeSH
- proteiny vázající chlorofyl * chemie MeSH
- rozsivky * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- fucoxanthin MeSH Prohlížeč
- proteiny vázající chlorofyl * MeSH
In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.
- Klíčová slova
- Chlorophyll fluorescence, Chloroplast avoidance movement, Desiccation, Relative water content, Transmittance,
- MeSH
- chlorofyl metabolismus MeSH
- chloroplasty fyziologie účinky záření MeSH
- fluorescence MeSH
- fotosyntéza MeSH
- fyziologický stres MeSH
- ječmen (rod) fyziologie účinky záření MeSH
- listy rostlin fyziologie účinky záření MeSH
- období sucha MeSH
- tabák fyziologie účinky záření MeSH
- tma MeSH
- voda analýza fyziologie MeSH
- vysoušení MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- voda MeSH
Lanthanides (La, Gd, Nd, Ce) accumulated in the green alga Desmodesmus quadricauda but their intracellular localizations were distinctly different: lanthanum and gadolinium were localized in cytoplasm, while neodymium and cerium were in the chloroplast. The effect of lanthanum and neodymium, as representatives of these two groups, on growth, chlorophyll content and photosynthetic rate at different light intensities was studied. At the lowest light intensity used (50 µmol photons m-2 s-1), in the presence of lanthanides (Nd), growth was enhanced by as much as 36 % over lanthanide free control, and the photosynthetic rate increased by up to 300 %. At high light intensities (238, 460, and 750 µmol photons m-2 s-1), photosynthetic rate increased markedly, but there was no significant difference between rates in the presence or absence of lanthanides. However, growth, measured as a percentage of dry weight, if compared with lanthanide free control, increased at all light intensities (31, 39, and 20 %, respectively). The total amount of chlorophyll after lanthanide treatment increased by up to 21 % relative to the control culture, mainly due to an increase in the level of chlorophyll b. Addition of lanthanides caused a change in the chlorophyll a/b ratio from 4.583 in control cultivation, to 1.05. Possible mechanisms of lanthanide-induced photosynthetic change, alterations in photosynthetic structures, and increases in growth are discussed and compared with findings in higher plants. The hypothesis that the lanthanide effect could be due to formation of lanthanide-pheophytins was not confirmed as lanthanide pheophytins were not found in D. quadricauda. Furthermore, we have shown that the preferential incorporation of heavy isotopes of magnesium, namely 25Mg and 26Mg, into chlorophyll during photosynthesis that occurred in controls was diminished in the presence of lanthanides.
- Klíčová slova
- Chlorophyll, Green algae, Growth, High-resolution electrospray mass spectrometry, Lanthanides, Magnesium isotopes, Photosynthetic rate,
- MeSH
- chlorofyl analýza izolace a purifikace fyziologie MeSH
- Chlorophyta chemie účinky léků růst a vývoj metabolismus MeSH
- chloroplasty účinky léků metabolismus MeSH
- fotosyntéza účinky léků MeSH
- lanthanoidy farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- lanthanoidy MeSH