GPR81 Dotaz Zobrazit nápovědu
G protein-coupled receptor 81 (GPR81), a selective receptor for lactate, expresses in skeletal muscle cells, but the physiological role of GPR81 in skeletal muscle has not been fully elucidated. As it has been reported that the lactate administration induces muscle hypertrophy, the stimulation of GPR81 has been suggested to mediate muscle hypertrophy. To clarify the contribution of GPR81 activation in skeletal muscle hypertrophy, in the present study, we investigated the effect of GPR81 agonist administration on skeletal muscle mass in mice. Male C57BL/6J mice were randomly divided into control group and GPR81 agonist-administered group that received oral administration of the specific GPR81 agonist 3-Chloro-5-hydroxybenzoic acid (CHBA). In both fast-twitch plantaris and slow-twitch soleus muscles of mice, the protein expression of GPR81 was observed. Oral administration of CHBA to mice significantly increased absolute muscle weight and muscle weight relative to body weight in the two muscles. Moreover, both absolute and relative muscle protein content in the two muscles were significantly increased by CHBA administration. CHBA administration also significantly upregulated the phosphorylation level of p42/44 extracellular signal-regulated kinase-1/2 (ERK1/2) and p90 ribosomal S6 kinase (p90RSK). These observations suggest that activation of GRP81 stimulates increased the mass of two types of skeletal muscle in mice in vivo. Lactate receptor GPR81 may positively affect skeletal muscle mass through activation of ERK pathway.
- MeSH
- hypertrofie metabolismus MeSH
- kosterní svalová vlákna metabolismus MeSH
- kosterní svaly * metabolismus MeSH
- kyselina mléčná * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptory spřažené s G-proteiny MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina mléčná * MeSH
- receptory spřažené s G-proteiny MeSH
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
- Klíčová slova
- GPR81, SCFA, colorectal cancer, functional food, intestinal metabolome, microbiome,
- MeSH
- beta-glukany farmakologie MeSH
- butyráty farmakologie MeSH
- kyselina mléčná farmakologie MeSH
- kyseliny mastné těkavé metabolismus farmakologie MeSH
- lidé MeSH
- metabolom MeSH
- nádory dietoterapie metabolismus MeSH
- potravní doplňky mikrobiologie MeSH
- prebiotika mikrobiologie MeSH
- probiotika metabolismus farmakologie MeSH
- střevní mikroflóra účinky léků MeSH
- sulfan farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- beta-glukany MeSH
- butyráty MeSH
- kyselina mléčná MeSH
- kyseliny mastné těkavé MeSH
- prebiotika MeSH
- sulfan MeSH