OpenPose (OP) Dotaz Zobrazit nápovědu
This paper presents a neural network simulator based on anonymized patient motions that measures, categorizes, and infers human gestures based on a library of anonymized patient motions. There is a need for a sufficient training set for deep learning applications (DL). Our proposal is to extend a database that includes a limited number of videos of human physiotherapy activities with synthetic data. As a result of our posture generator, we are able to generate skeletal vectors that depict human movement. A human skeletal model is generated by using OpenPose (OP) from multiple-person videos and photographs. In every video frame, OP represents each human skeletal position as a vector in Euclidean space. The GAN is used to generate new samples and control the parameters of the motion. The joints in our skeletal model have been restructured to emphasize their linkages using depth-first search (DFS), a method for searching tree structures. Additionally, this work explores solutions to common problems associated with the acquisition of human gesture data, such as synchronizing activities and linking them to time and space. A new simulator is proposed that generates a sequence of virtual coordinated human movements based upon a script.
- Klíčová slova
- Generative Adversarial Network (GAN), Human body movements, OpenPose, Rehabilitation, Siamese twins Neural Network, Simulator,
- MeSH
- databáze faktografické MeSH
- lidé MeSH
- neuronové sítě * MeSH
- pohyb * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this article, we introduce a new approach to human movement by defining the movement as a static super object represented by a single two-dimensional image. The described method is applicable in remote healthcare applications, such as physiotherapeutic exercises. It allows researchers to label and describe the entire exercise as a standalone object, isolated from the reference video. This approach allows us to perform various tasks, including detecting similar movements in a video, measuring and comparing movements, generating new similar movements, and defining choreography by controlling specific parameters in the human body skeleton. As a result of the presented approach, we can eliminate the need to label images manually, disregard the problem of finding the start and the end of an exercise, overcome synchronization issues between movements, and perform any deep learning network-based operation that processes super objects in images in general. As part of this article, we will demonstrate two application use cases: one illustrates how to verify and score a fitness exercise. In contrast, the other illustrates how to generate similar movements in the human skeleton space by addressing the challenge of supplying sufficient training data for deep learning applications (DL). A variational auto encoder (VAE) simulator and an EfficientNet-B7 classifier architecture embedded within a Siamese twin neural network are presented in this paper in order to demonstrate the two use cases. These use cases demonstrate the versatility of our innovative concept in measuring, categorizing, inferring human behavior, and generating gestures for other researchers.
- Klíčová slova
- MediaPipe (MP), OpenPose (OP), Siamese twin neural network, computational creativity, computational imagination, human body movements, human pose estimation (HPE), rehabilitation, simulator, tree structure skeleton color image (TSSCI), tree structure skeleton image (TSSI), variational auto encoder (VAE),
- Publikační typ
- časopisecké články MeSH