The Resource Description Framework (RDF), together with well-defined ontologies, significantly increases data interoperability and usability. The SPARQL query language was introduced to retrieve requested RDF data and to explore links between them. Among other useful features, SPARQL supports federated queries that combine multiple independent data source endpoints. This allows users to obtain insights that are not possible using only a single data source. Owing to all of these useful features, many biological and chemical databases present their data in RDF, and support SPARQL querying. In our project, we primary focused on PubChem, ChEMBL and ChEBI small-molecule datasets. These datasets are already being exported to RDF by their creators. However, none of them has an official and currently supported SPARQL endpoint. This omission makes it difficult to construct complex or federated queries that could access all of the datasets, thus underutilising the main advantage of the availability of RDF data. Our goal is to address this gap by integrating the datasets into one database called the Integrated Database of Small Molecules (IDSM) that will be accessible through a SPARQL endpoint. Beyond that, we will also focus on increasing mutual interoperability of the datasets. To realise the endpoint, we decided to implement an in-house developed SPARQL engine based on the PostgreSQL relational database for data storage. In our approach, data are stored in the traditional relational form, and the SPARQL engine translates incoming SPARQL queries into equivalent SQL queries. An important feature of the engine is that it optimises the resulting SQL queries. Together with optimisations performed by PostgreSQL, this allows efficient evaluations of SPARQL queries. The endpoint provides not only querying in the dataset, but also the compound substructure and similarity search supported by our Sachem project. Although the endpoint is accessible from an internet browser, it is mainly intended to be used for programmatic access by other services, for example as a part of federated queries. For regular users, we offer a rich web application called ChemWebRDF using the endpoint. The application is publicly available at https://idsm.elixir-czech.cz/chemweb/ .
- Keywords
- Resource Descriptor Framework, SPARQL, Small-molecule datasets,
- Publication type
- Journal Article MeSH
AIMS: Biological incidents jeopardising public health require decision-making that consists of one dominant feature: complexity. Therefore, public health decision-makers necessitate appropriate support. METHODS: Based on the analogy with business intelligence (BI) principles, the contextual analysis of the environment and available data resources, and conceptual modelling within systems and knowledge engineering, this paper proposes a general framework for computer-based decision support in the case of a biological incident. At the outset, the analysis of potential inputs to the framework is conducted and several resources such as demographic information, strategic documents, environmental characteristics, agent descriptors and surveillance systems are considered. RESULTS: Consequently, three prototypes were developed, tested and evaluated by a group of experts. Their selection was based on the overall framework scheme. Subsequently, an ontology prototype linked with an inference engine, multi-agent-based model focusing on the simulation of an environment, and expert-system prototypes were created. CONCLUSIONS: All prototypes proved to be utilisable support tools for decision-making in the field of public health. Nevertheless, the research revealed further issues and challenges that might be investigated by both public health focused researchers and practitioners.
- MeSH
- Disease Outbreaks statistics & numerical data MeSH
- Disasters * MeSH
- Food Contamination analysis MeSH
- Humans MeSH
- Decision Support Techniques * MeSH
- Biohazard Release * MeSH
- Public Health Informatics methods standards MeSH
- Public Health methods standards MeSH
- Water Pollution analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Buckwheat is a nutritionally valuable crop, an alternative to common cereals also usable in gluten-free diets. The selection of buckwheat genotypes suitable for further breeding requires the characterization and evaluation of genetic resources. The main objective of this work was to evaluate selected phenotypic and morphological traits using international buckwheat descriptors, including total phenolic content and antioxidant activity, on a unique set of 136 common buckwheat accessions grown in 2019-2020 under Czech Republic conditions. In addition, UHPLC-ESI- MS/MS was used to analyze a wide spectrum of 20 phenolic compounds in buckwheat seeds, including four flavanols, three phenolic acids, seven flavonols, four flavones, and two flavanones. Significant differences among years and genotypes were observed for morphological traits (plant height and 1000-seed weight) and antioxidant activity, as well as levels of observed chemical compounds. Antioxidant activity, crude protein content, plant height and rutin content were characterized by higher mean values in 2020 than in 2019 and vice versa for total polyphenol content and 1000-seed weight. Crude protein content was the most stable across years, while total polyphenol content and rutin content varied greatly from year to year. The most abundant phenolic compounds were rutin, hyperoside, epicatechin, catechin, vitexin, isovitexin, orientin and isoorientin. Protein content was negatively correlated with plant height, catechin and epicatechin content. On the other hand, AA and TPC were positively correlated with rutin, hyperoside and chlorogenic acid. Five accessions showed high stability of the evaluated traits under changing conditions within both years of observation. These materials can be used in breeding programmes aimed at improving buckwheat genotypes with emphasis on quality traits.
- Keywords
- Fagopyrum, breeding, common buckwheat, mass spectrometry, morpho-agronomic traits, phenolic compounds, protein,
- Publication type
- Journal Article MeSH