Brain-computer interfaces are used for direct two-way communication between the human brain and the computer. Brain signals contain valuable information about the mental state and brain activity of the examined subject. However, due to their non-stationarity and susceptibility to various types of interference, their processing, analysis and interpretation are challenging. For these reasons, the research in the field of brain-computer interfaces is focused on the implementation of artificial intelligence, especially in five main areas: calibration, noise suppression, communication, mental condition estimation, and motor imagery. The use of algorithms based on artificial intelligence and machine learning has proven to be very promising in these application domains, especially due to their ability to predict and learn from previous experience. Therefore, their implementation within medical technologies can contribute to more accurate information about the mental state of subjects, alleviate the consequences of serious diseases or improve the quality of life of disabled patients.
- Keywords
- Artificial intelligence, Artificial neural networks, Brain–computer interfaces, Fuzzy logic, Machine learning, Nature-inspired optimization techniques,
- MeSH
- Algorithms MeSH
- Quality of Life MeSH
- Humans MeSH
- Brain MeSH
- Computers MeSH
- Brain-Computer Interfaces * MeSH
- Machine Learning MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
- Keywords
- Nanoneuro interface, brain-on-a-chip, brain−machine interfaces, control of ion channels, deep brain stimulation, electrode arrays, extracellular recordings, nanostructured interface, neuro-implants, neuronal communication,
- MeSH
- Humans MeSH
- Brain * physiology MeSH
- Nanostructures chemistry MeSH
- Nanotechnology * methods MeSH
- Brain-Computer Interfaces * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability. OBJECTIVES: Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity. METHODS: Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination. RESULTS: The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination. CONCLUSIONS: Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration.
- Keywords
- Artifacts, Brain computer interface, Deep brain stimulation, Neuromodulation, Oscillations,
- MeSH
- Algorithms MeSH
- Artifacts MeSH
- Electrocardiography MeSH
- Essential Tremor * MeSH
- Humans MeSH
- Brain-Computer Interfaces * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
- Keywords
- EEG, electroencephalography, evolutionary algorithms, nature-inspired metaheuristics, optimization,
- MeSH
- Algorithms * MeSH
- Artifacts MeSH
- Electroencephalography * methods MeSH
- Humans MeSH
- Brain * physiology MeSH
- Brain-Computer Interfaces MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Guess the number is a simple P300-based brain-computer interface experiment. Its aim is to ask the measured participant to pick a number between 1 and 9. Then, he or she is exposed to corresponding visual stimuli and experimenters try to guess the number thought while they are observing event-related potential waveforms on-line. 250 school-age children participated in the experiments that were carried out in elementary and secondary schools in the Czech Republic. Electroencephalographic data from three EEG channels (Fz, Cz, Pz) and stimuli markers were stored. Additional metadata about the participants were collected (gender, age, laterality, the number thought by the participant, the guess of the experimenters, and various interesting additional information). Consequently, we offer the largest publicly available odd-ball paradigm collection of datasets to neuroscientific and brain-computer interface community.
- MeSH
- Child MeSH
- Electroencephalography MeSH
- Humans MeSH
- Adolescent MeSH
- Brain-Computer Interfaces * MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Brain-computer interface (BCI) provides direct communication between the brain and an external device. BCI systems have become a trendy field of research in recent years. These systems can be used in a variety of applications to help both disabled and healthy people. Concerning significant BCI progress, we may assume that these systems are not very far from real-world applications. This review has taken into account current trends in BCI research. In this survey, 100 most cited articles from the WOS database were selected over the last 4 years. This survey is divided into several sectors. These sectors are Medicine, Communication and Control, Entertainment, and Other BCI applications. The application area, recording method, signal acquisition types, and countries of origin have been identified in each article. This survey provides an overview of the BCI articles published from 2016 to 2020 and their current trends and advances in different application areas.
- Keywords
- BCI applications, BCI entertainment, BCI in medicine, brain-computer interface (BCI), communication and control in BCI, invasive BCI, noninvasive BCI,
- MeSH
- Electroencephalography MeSH
- Humans MeSH
- Brain MeSH
- Communication Devices for People with Disabilities * MeSH
- Brain-Computer Interfaces * MeSH
- User-Computer Interface MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Objective.Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task.Approach.We trained CNNs to predict hand movement speed from intracranial electroencephalography (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal.Main results.We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations.Significance.We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.
- Keywords
- brain–computer interface (BCI), deep learning, explainable AI (XAI), internal representation, intracranial EEG (iEEG), motor decoding, neural network visualization,
- MeSH
- Algorithms MeSH
- Electroencephalography methods MeSH
- Brain MeSH
- Neural Networks, Computer MeSH
- Brain-Computer Interfaces * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Depression is a major depressive disorder characterized by persistent sadness and a sense of worthlessness, as well as a loss of interest in pleasurable activities, which leads to a variety of physical and emotional problems. It is a worldwide illness that affects millions of people and should be detected at an early stage to prevent negative effects on an individual's life. Electroencephalogram (EEG) is a non-invasive technique for detecting depression that analyses brain signals to determine the current mental state of depressed subjects. In this study, we propose a method for automatic feature extraction to detect depression by first constructing a graph from the dataset where the nodes represent the subjects in the dataset and where the edge weights obtained using the Euclidean distance reflect the relationship between them. The Node2vec algorithmic framework is then used to compute feature representations for nodes in a graph in the form of node embeddings ensuring that similar nodes in the graph remain near in the embedding. These node embeddings act as useful features which can be directly used by classification algorithms to determine whether a subject is depressed thus reducing the effort required for manual handcrafted feature extraction. To combine the features collected from the multiple channels of the EEG data, the method proposes three types of fusion methods: graph-level fusion, feature-level fusion, and decision-level fusion. The proposed method is tested on three publicly available datasets with 3, 20, and 128 channels, respectively, and compared to five state-of-the-art methods. The results show that the proposed method detects depression effectively with a peak accuracy of 0.933 in decision-level fusion, which is the highest among the state-of-the-art methods.
- Keywords
- Decision-level fusion, Electroencephalography, Feature-level fusion, Graph-level fusion, Node2vec,
- MeSH
- Algorithms MeSH
- Depression diagnosis MeSH
- Depressive Disorder, Major * diagnosis MeSH
- Electroencephalography MeSH
- Humans MeSH
- Brain-Computer Interfaces * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
- Keywords
- Actuators, Brain–machine interfaces, Carbon nanotubes, Energy storage, Sensors, Transistors,
- Publication type
- Journal Article MeSH
BACKGROUND: Evidence suggests that brain-computer interface (BCI)-based rehabilitation strategies show promise in overcoming the limited recovery potential in the chronic phase of stroke. However, the specific mechanisms driving motor function improvements are not fully understood. OBJECTIVE: We aimed at elucidating the potential functional brain connectivity changes induced by BCI training in participants with chronic stroke. METHODS: A longitudinal crossover design was employed with two groups of participants over the span of 4 weeks to allow for within-subject (n = 21) and cross-group comparisons. Group 1 (n = 11) underwent a 6-day motor imagery-based BCI training during the second week, whereas Group 2 (n = 10) received the same training during the third week. Before and after each week, both groups underwent resting state functional MRI scans (4 for Group 1 and 5 for Group 2) to establish a baseline and monitor the effects of BCI training. RESULTS: Following BCI training, an increased functional connectivity was observed between the medial prefrontal cortex of the default mode network (DMN) and motor-related areas, including the premotor cortex, superior parietal cortex, SMA, and precuneus. Moreover, these changes were correlated with the increased motor function as confirmed with upper-extremity Fugl-Meyer assessment scores, measured before and after the training. CONCLUSIONS: Our findings suggest that BCI training can enhance brain connectivity, underlying the observed improvements in motor function. They provide a basis for developing novel rehabilitation approaches using non-invasive brain stimulation for targeting functionally relevant brain regions, thereby augmenting BCI-induced neuroplasticity and enhancing motor recovery.
- Keywords
- Brain-computer interface, Default mode network, Functional Connectivity, Neuroplasticity, Resting-state fMRI, Stroke,
- MeSH
- Stroke * physiopathology diagnostic imaging MeSH
- Chronic Disease MeSH
- Default Mode Network * physiopathology diagnostic imaging MeSH
- Adult MeSH
- Cross-Over Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Magnetic Resonance Imaging MeSH
- Brain * physiopathology diagnostic imaging MeSH
- Nerve Net * physiopathology diagnostic imaging MeSH
- Stroke Rehabilitation * methods MeSH
- Brain-Computer Interfaces * MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH