let-7c Dotaz Zobrazit nápovědu
BACKGROUND/AIM: MicroRNAs (miRs) play an important role in the regulation of cancer-related processes and are promising candidates for cancer biomarkers. The aim of the study was to evaluate the association of response to anti-EGFR monoclonal antibodies (mAbs) with selected miR expression profiles, including miR-125b, let-7c, miR-99a, miR-17, miR-143 and miR-145 in metastatic colorectal cancer (mCRC) patients. PATIENTS AND METHODS: This retrospective study included 46 patients with mCRC harbouring wild-type RAS gene treated with cetuximab or panitumumab combined with chemotherapy in first- or second-line therapy. The miR expression was assessed using qRT-PCR. RESULTS: Down-regulation of miR-125b and let-7c and up-regulation of miR-17 were found in the tumour tissue (p=0.0226, p=0.0040, p<0.0001). Objective response rate (ORR) was associated with up-regulation of miR-125b (p=0.0005). Disease control rate (DCR) was associated with up-regulation of miR-125b and let-7c (p=0.0383 and p=0.0255) and down-regulation of miR-17 (p=0.0464). MiR-125b showed correlation with progression-free and overall survival (p=0.055 and p=0.006). CONCLUSION: The results show that up-regulation of miR-125b is associated with higher ORR and DCR and longer survival; let-7c up-regulation and miR-17 down-regulation are associated with higher DCR in mCRC patients treated with anti-EGFR mAbs.
- Klíčová slova
- Colorectal cancer, cetuximab, chemotherapy, let-7c, miR-125b, miR-17, microRNA, panitumumab,
- MeSH
- cetuximab farmakologie terapeutické užití MeSH
- chemorezistence genetika MeSH
- doba přežití bez progrese choroby MeSH
- dospělí MeSH
- down regulace MeSH
- erbB receptory antagonisté a inhibitory genetika MeSH
- inhibitory proteinkinas farmakologie terapeutické užití MeSH
- kolorektální nádory farmakoterapie genetika mortalita patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- nádorové biomarkery metabolismus MeSH
- panitumumab farmakologie terapeutické užití MeSH
- protokoly antitumorózní kombinované chemoterapie farmakologie terapeutické užití MeSH
- regulace genové exprese u nádorů MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- upregulace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cetuximab MeSH
- EGFR protein, human MeSH Prohlížeč
- erbB receptory MeSH
- inhibitory proteinkinas MeSH
- mikro RNA MeSH
- MIRN125 microRNA, human MeSH Prohlížeč
- MIRN17 microRNA, human MeSH Prohlížeč
- mirnlet7 microRNA, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- panitumumab MeSH
INTRODUCTION: Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS: This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS: Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION: We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION: Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS: This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS: Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION: We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
- Klíčová slova
- Breast cancer, MicroRNA, U6 snRNA, let-7c, miR-182, miR-200c, miR-328, miR-451a, miR-454, miR-493,
- MeSH
- dospělí MeSH
- invazivní růst nádoru MeSH
- lidé středního věku MeSH
- lidé MeSH
- lymfatické metastázy MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové biomarkery * genetika metabolismus MeSH
- nádory prsu * patologie genetika metabolismus mortalita MeSH
- regulace genové exprese u nádorů * MeSH
- RNA malá jaderná * genetika metabolismus MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA * MeSH
- mirnlet7 microRNA, human MeSH Prohlížeč
- nádorové biomarkery * MeSH
- RNA malá jaderná * MeSH
- U6 small nuclear RNA MeSH Prohlížeč
INTRODUCTION: Urinary microRNAs (miRNAs) are emerging as a clinically useful tool for early and non-invasive detection of various types of cancer. The aim of this study was to evaluate whether let-7 family miRNAs differ in their urinary concentrations between renal cell carcinoma (RCC) cases and healthy controls. MATERIALS AND METHODS: In the case-control study, 69 non-metastatic clear-cell RCC patients and 36 gender/age-matched healthy controls were prospectively enrolled. Total RNA was purified from cell-free supernatant of the 105 first morning urine specimens. Let-7 family miRNAs were determined in cell-free supernatant using quantitative miRNA real-time reverse-transcription PCR and absolute quantification approach. RESULTS: Concentrations of all let-7 miRNAs (let-7a, let-7b, let-7c, let-7d, let-7e and let-7g) were significantly higher in urine samples obtained from RCC patients compared to healthy controls (P < 0.001; P < 0.001; P = 0.005; P = 0.006; P = 0.015 and P = 0.002, respectively). Subsequent ROC analysis has shown that let-7a concentration possesses good ability to differentiate between cases and controls with area under curve being 0.8307 (sensitivity 71%, specificity 81%). CONCLUSIONS: We have shown that let-7 miRNAs are abundant in the urine samples of patients with clear-cell RCC, and out of six let-7 family members, let-7a outperforms the others and presents promising non-invasive biomarker for the detection of RCC.
- Klíčová slova
- diagnostic biomarker, let-7, renal cell carcinoma, urine microRNAs,
- MeSH
- dospělí MeSH
- karcinom z renálních buněk diagnóza genetika moč MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika moč MeSH
- nádorové biomarkery genetika MeSH
- nádory ledvin diagnóza genetika moč MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- regulace genové exprese u nádorů * MeSH
- ROC křivka MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA MeSH
- mirnlet7 microRNA, human MeSH Prohlížeč
- nádorové biomarkery MeSH
OBJECTIVE: Molecular pathogenesis of Down syndrome (DS) is still incompletely understood. Epigenetic mechanisms, including miRNAs gene expression regulation, belong to potential influencing factors. The aims of this study were to compare miRNAs expressions in placentas with normal and trisomic karyotype and to associate differentially expressed miRNAs with concrete biological pathways. METHODS: A total of 80 CVS samples - 41 with trisomy 21 and 39 with normal karyotype - were included in our study. Results obtained in the pilot study using real-time PCR technology and TaqMan Human miRNA Array Cards were subsequently validated on different samples using individual TaqMan miRNA Assays. RESULTS: Seven miRNAs were verified as upregulated in DS placentas (miR-99a, miR-542-5p, miR-10b, miR-125b, miR-615, let-7c and miR-654); three of these miRNAs are located on chromosome 21 (miR-99a, miR-125b and let-7c). Many essential biological processes, transcriptional regulation or apoptosis, were identified as being potentially influenced by altered miRNA levels. Moreover, miRNAs overexpressed in DS placenta apparently regulate genes involved in placenta development (GJA1, CDH11, EGF, ERVW-1, ERVFRD-1, LEP or INHA). CONCLUSION: These findings suggest the possible participation of miRNAs in Down syndrome impaired placentation and connected pregnancy pathologies. © 2016 John Wiley & Sons, Ltd.
- MeSH
- dospělí MeSH
- Downův syndrom genetika metabolismus MeSH
- epidermální růstový faktor genetika MeSH
- epigeneze genetická MeSH
- genové produkty env genetika MeSH
- inhibiny genetika MeSH
- kadheriny genetika MeSH
- konexin 43 genetika MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- leptin genetika MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- odběr choriových klků MeSH
- pilotní projekty MeSH
- placenta metabolismus MeSH
- placentace genetika MeSH
- studie případů a kontrol MeSH
- těhotenské proteiny genetika MeSH
- těhotenství MeSH
- transkriptom MeSH
- upregulace MeSH
- vývojová regulace genové exprese genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epidermální růstový faktor MeSH
- ERVFRD-1 protein, human MeSH Prohlížeč
- genové produkty env MeSH
- GJA1 protein, human MeSH Prohlížeč
- inhibin-alpha subunit MeSH Prohlížeč
- inhibiny MeSH
- kadheriny MeSH
- konexin 43 MeSH
- leptin MeSH
- mikro RNA MeSH
- MIRN10 microRNA, human MeSH Prohlížeč
- MIRN125 microRNA, human MeSH Prohlížeč
- MIRN542 microRNA, human MeSH Prohlížeč
- MIRN615 microRNA, human MeSH Prohlížeč
- MIRN99 microRNA, human MeSH Prohlížeč
- mirnlet7 microRNA, human MeSH Prohlížeč
- osteoblast cadherin MeSH Prohlížeč
- syncytin MeSH Prohlížeč
- těhotenské proteiny MeSH
OBJECTIVE: Initially, we focused on the detection of extracellular microRNAs in maternal circulation, whose genes are located on human chromosome 21 (miR-99a, let-7c, miR-125b-2, miR-155 and miR-802). Subsequently, we studied if plasmatic concentrations and/or expression profile of extracellular chromosome 21-derived microRNAs would distinguish between pregnancies bearing euploid foetuses and those affected with Down syndrome. DESIGN: Pilot study. SETTING: Division of Molecular Biology and Cell Pathology, Department of Gynaecology and Obstetrics, Third Faculty of Medicine, Charles University, Prague. METHODS: 12 women with normal course of gestation (mean 16.4 weeks, median 16.0 weeks), 12 pregnancies bearing Down syndrome foetus (mean 18.2 weeks, median 18.5 weeks) and 6 non-pregnant individuals were involved in the retrospective study. RNA enriched for small RNAs (including microRNAs) was isolated from 1ml of plasma sample. Consequently relevant microRNA was transcribed into cDNA using specific stem-loop primer and detected by specific real-time PCR assay. RESULTS: Commercial systems enabled reliable detection of 4 out of 5 extracellular chromosome 21-derived microRNAs (miR-99a, let-7c, miR-125b-2 and miR-155). Expression profile of extracellular miR-99a, miR-125b-2 and miR-155 was significantly higher in the cohort of pregnant women than in non-pregnant individuals. Also plasmatic levels of miR-99a and miR-125b-2 were significantly increased in pregnant women. Unfortunately, the concentrations and gene expression of extracellular chromosome 21-derived microRNAs (miR-99a, let-7c, miR-125b-2 and miR-155) did not differ between the cohorts of pregnancies bearing euploid foetuses and those affected with Down syndrome. CONCLUSION: Analysis of extracellular chromosome 21-derived microRNAs does not distinguish between pregnancies with euploid and aneuploid foetuses and has no benefit for screening programmes.
- MeSH
- Downův syndrom diagnóza MeSH
- genetické markery MeSH
- lidé MeSH
- lidské chromozomy, pár 21 genetika MeSH
- mikro RNA krev MeSH
- prenatální diagnóza * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- Názvy látek
- genetické markery MeSH
- mikro RNA MeSH
BACKGROUND & OBJECTIVES: Trisomy 21 is the most common chromosomal aneuploidy in live born infants. Recently, the over expression of chromosome 21-derived microRNAs (miR-99a, let-7c, miR-125b-2, miR-155 and miR-802) in human fetal hippocampus and heart samples from individuals with Down syndrome was observed. Therefore, concentrations and expression profile of extracellular chromosome 21-derived microRNAs were studied to verify their ability to distinguish noninvasively between pregnancies bearing euploid fetuses and those affected with Down syndrome. METHODS: RNA enriched for small RNAs was isolated from plasma samples of 12 pregnant women with high risk of bearing Down syndrome foetuses (median gestation 18.5 wk), 12 women with normal course of gestation and 10 non-pregnant women. MicroRNA transcribed into cDNA using specific stem-loop primer was detected using real-time PCR assay. Simulation experiments using RNA pools of healthy non-pregnant individuals and aneuploid amniotic fluid samples in descending dilution ratio ranging from 1:1 to 1000:1 were used to test the detection limit of the technique for overexpressed chromosome 21-derived microRNAs specific for Down syndrome. The expression profile of the gene encoding microRNA was studied through the relative gene expression using the comparative Ct (threshold cycle) method. Concentrations of individual microRNAs were subtracted from the calibration curves in the course of analyses and expressed as pg of total RNA per milliliter of plasma. RESULTS: Four of the five extracellular chromosome 21-derived microRNAs (miR-99a, let-7c, miR-125b-2 and miR-155) were reliably detected in plasma samples. Simulation experiments revealed the detection limit of aneuploidy at a ratio 100:1 for let-7c, miR-125b-2 and miR-155, and a ratio of 1000:1 for miR-99a. Overexpression of extracellular miR-99a, miR-125b-2 and miR-155 was observed in pregnant women compared to non-pregnant women. Similarly, increased concentrations of extracellular miR-99a and miR-125b-2 were detected in pregnant women than in non-pregnant women. The concentrations and relative gene expression of extracellular chromosome 21-derived microRNAs did not differ between the cohorts of pregnancies bearing euploid foetuses and those affected with Down syndrome. INTERPRETATION & CONCLUSIONS: Analysis of extracellular chromosome 21-derived microRNAs has no benefit for screening programmes and non-invasive diagnosis of Down syndrome.
- MeSH
- aneuploidie MeSH
- diploidie MeSH
- dospělí MeSH
- Downův syndrom genetika patologie MeSH
- lidé MeSH
- lidské chromozomy, pár 21 genetika MeSH
- mikro RNA biosyntéza genetika MeSH
- plod MeSH
- těhotenství MeSH
- vývojová regulace genové exprese * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
Sarcoidosis is an inflammatory granulomatous disease with unknown etiology driven by cytokines and chemokines. There is limited information regarding the regulation of cytokine/chemokine-receptor network in bronchoalveolar lavage (BAL) cells in pulmonary sarcoidosis, suggesting contribution of miRNAs and transcription factors. We therefore investigated gene expression of 25 inflammation-related miRNAs, 27 cytokines/chemokines/receptors, and a Th1-transcription factor T-bet in unseparated BAL cells obtained from 48 sarcoidosis patients and 14 control subjects using quantitative RT-PCR. We then examined both miRNA-mRNA expressions to enrich relevant relationships. This first study on miRNAs in sarcoid BAL cells detected deregulation of miR-146a, miR-150, miR-202, miR-204, and miR-222 expression comparing to controls. Subanalysis revealed higher number of miR-155, let-7c transcripts in progressing (n = 20) comparing to regressing (n = 28) disease as assessed by 2-year follow-up. Correlation network analysis revealed relationships between microRNAs, transcription factor T-bet, and deregulated cytokine/chemokine-receptor network in sarcoid BAL cells. Furthermore, T-bet showed more pronounced regulatory capability to sarcoidosis-associated cytokines/chemokines/receptors than miRNAs, which may function rather as "fine-tuners" of cytokine/chemokine expression. Our correlation network study implies contribution of both microRNAs and Th1-transcription factor T-bet to the regulation of cytokine/chemokine-receptor network in BAL cells in sarcoidosis. Functional studies are needed to confirm biological relevance of the obtained relationships.
- MeSH
- dospělí MeSH
- genové regulační sítě * MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA analýza MeSH
- mikro RNA fyziologie MeSH
- plicní sarkoidóza imunologie MeSH
- proteiny T-boxu fyziologie MeSH
- receptory chemokinů genetika MeSH
- receptory cytokinové genetika MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
- proteiny T-boxu MeSH
- receptory chemokinů MeSH
- receptory cytokinové MeSH
- T-bet Transcription Factor MeSH
BACKGROUND: Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms. EV-coupled miRNA signaling is implicated to be associated with ovarian function, follicle and oocyte growth and response to various environmental insults. Herein, we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses. RESULTS: Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the anovulatory (spring: non-breeding) and ovulatory (spring, summer, and fall: breeding) seasons and subsequent EV isolation and miRNA profiling identified significant variation in EV-miRNA cargo content. We identified 97 miRNAs with differential expression among the groups and specific clusters of miRNAs involved in the spring transition (miR-149, -200b, -206, -221, -328, and -615) and peak breeding period (including miR-143, -192, -451, -302b, -100, and let-7c). Bioinformatic analyses showed enrichments in various biological functions, e.g., transcription factor activity, transcription and transcription regulation, nucleic acid binding, sequence-specific DNA binding, p53 signaling, and post-translational modifications. Cluster analyses revealed distinct sets of significantly up- and down-regulated miRNAs associated with spring anovulatory (Cluster 1) and summer ovulation-the peak breeding season (Clusters 4 and 6). CONCLUSIONS: The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons, and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
- Klíčová slova
- Extracellular vesicle, Follicle growth, Follicular fluid, Horse, Mare, Ovulation, Pre-ovulation, Seasonal breeding,
- Publikační typ
- časopisecké články MeSH