-
Je něco špatně v tomto záznamu ?
Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns
T. Hájek, P. Jandera, M. Staňková, P. Česla,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- acetonitrily MeSH
- betain analogy a deriváty MeSH
- chromatografie kapalinová přístrojové vybavení metody MeSH
- chromatografie s reverzní fází přístrojové vybavení metody MeSH
- flavony izolace a purifikace MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydroxybenzoáty izolace a purifikace MeSH
- kyseliny polymethakrylové * MeSH
- oxid křemičitý * MeSH
- rozpouštědla MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
A monolithic sulfobetaine polymethacrylate micro-column BIGDMA-MEDSA designed in our laboratory, shows dual retention mechanism: In acetonitrile-rich mobile phase, hydrophilic interactions control the retention (HILIC system), whereas in more aqueous mobile phases the column shows essentially reversed-phase behavior with major role of hydrophobic interactions. The zwitterionic polymethacrylate micro-column can be used in the first dimension of two-dimensional LC in alternating reversed-phase (RP) and HILIC modes, coupled with an alkyl-bonded core-shell or silica-based monolithic column in the second dimension, for HILIC×RP and RP×RP comprehensive two-dimensional separations. During the HILIC×RP period, a gradient of decreasing acetonitrile gradient is used for separation in the first dimension, so that at the end of the gradient the polymeric monolithic micro-column is equilibrated with a highly aqueous mobile phase and is ready for repeated sample injection, this time for separation under reversed-phase gradient conditions with increasing concentration of acetonitrile in the first dimension. The fast repeating reversed-phase gradients on a short silica-monolithic or core-shell column in the second dimension can be optimized independently of the actual running first-dimension gradient program. As the alternating HILIC and RP separations on the first-dimension zwitterionic methacrylate column are based on complementary retention mechanisms, the instrumental setup essentially represents two coupled two-dimensional systems. It is first time that such an automated dual LCxLC approach is reported. The novel system allows obtaining three-dimensional data in a relatively short time and can be applied not only to multidimensional gradient separations of flavones and related polyphenolic compounds.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17024065
- 003
- CZ-PrNML
- 005
- 20170720123158.0
- 007
- ta
- 008
- 170720s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.chroma.2016.04.007 $2 doi
- 035 __
- $a (PubMed)27083260
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Hájek, Tomáš $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
- 245 10
- $a Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns / $c T. Hájek, P. Jandera, M. Staňková, P. Česla,
- 520 9_
- $a A monolithic sulfobetaine polymethacrylate micro-column BIGDMA-MEDSA designed in our laboratory, shows dual retention mechanism: In acetonitrile-rich mobile phase, hydrophilic interactions control the retention (HILIC system), whereas in more aqueous mobile phases the column shows essentially reversed-phase behavior with major role of hydrophobic interactions. The zwitterionic polymethacrylate micro-column can be used in the first dimension of two-dimensional LC in alternating reversed-phase (RP) and HILIC modes, coupled with an alkyl-bonded core-shell or silica-based monolithic column in the second dimension, for HILIC×RP and RP×RP comprehensive two-dimensional separations. During the HILIC×RP period, a gradient of decreasing acetonitrile gradient is used for separation in the first dimension, so that at the end of the gradient the polymeric monolithic micro-column is equilibrated with a highly aqueous mobile phase and is ready for repeated sample injection, this time for separation under reversed-phase gradient conditions with increasing concentration of acetonitrile in the first dimension. The fast repeating reversed-phase gradients on a short silica-monolithic or core-shell column in the second dimension can be optimized independently of the actual running first-dimension gradient program. As the alternating HILIC and RP separations on the first-dimension zwitterionic methacrylate column are based on complementary retention mechanisms, the instrumental setup essentially represents two coupled two-dimensional systems. It is first time that such an automated dual LCxLC approach is reported. The novel system allows obtaining three-dimensional data in a relatively short time and can be applied not only to multidimensional gradient separations of flavones and related polyphenolic compounds.
- 650 _2
- $a acetonitrily $7 D000097
- 650 _2
- $a betain $x analogy a deriváty $7 D001622
- 650 _2
- $a chromatografie kapalinová $x přístrojové vybavení $x metody $7 D002853
- 650 _2
- $a chromatografie s reverzní fází $x přístrojové vybavení $x metody $7 D056148
- 650 _2
- $a flavony $x izolace a purifikace $7 D047309
- 650 _2
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 _2
- $a hydroxybenzoáty $x izolace a purifikace $7 D062385
- 650 12
- $a kyseliny polymethakrylové $7 D011109
- 650 12
- $a oxid křemičitý $7 D012822
- 650 _2
- $a rozpouštědla $7 D012997
- 650 _2
- $a voda $7 D014867
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Jandera, Pavel $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic. Electronic address: Pavel.Jandera@upce.cz.
- 700 1_
- $a Staňková, Magda $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
- 700 1_
- $a Česla, Petr $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
- 773 0_
- $w MED00004962 $t Journal of chromatography. A $x 1873-3778 $g Roč. 1446, č. - (2016), s. 91-102
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27083260 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170720123651 $b ABA008
- 999 __
- $a ok $b bmc $g 1239746 $s 984978
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 1446 $c - $d 91-102 $e 20160406 $i 1873-3778 $m Journal of chromatography. A, Including electrophoresis and other separation methods $n J Chromatogr A $x MED00004962
- LZP __
- $a Pubmed-20170720