-
Je něco špatně v tomto záznamu ?
Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects
H. Raschmanová, A. Weninger, A. Glieder, K. Kovar, T. Vogl,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- bodová mutace MeSH
- chromozomy hub MeSH
- CRISPR-Cas systémy * MeSH
- editace genu metody MeSH
- geneticky modifikované mikroorganismy MeSH
- guide RNA, Kinetoplastida MeSH
- klonování DNA MeSH
- kvasinky genetika MeSH
- metabolické inženýrství MeSH
- Pichia genetika MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae genetika MeSH
- technologie gene drive MeSH
- Yarrowia genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012916
- 003
- CZ-PrNML
- 005
- 20190405092638.0
- 007
- ta
- 008
- 190405s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.biotechadv.2018.01.006 $2 doi
- 035 __
- $a (PubMed)29331410
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Raschmanová, Hana $u Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic.
- 245 10
- $a Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects / $c H. Raschmanová, A. Weninger, A. Glieder, K. Kovar, T. Vogl,
- 520 9_
- $a Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
- 650 12
- $a CRISPR-Cas systémy $7 D064113
- 650 _2
- $a chromozomy hub $7 D015825
- 650 _2
- $a klonování DNA $7 D003001
- 650 _2
- $a technologie gene drive $7 D000075423
- 650 _2
- $a editace genu $x metody $7 D000072669
- 650 _2
- $a regulace genové exprese u hub $7 D015966
- 650 _2
- $a metabolické inženýrství $7 D060847
- 650 _2
- $a geneticky modifikované mikroorganismy $7 D000074041
- 650 _2
- $a Pichia $x genetika $7 D010843
- 650 _2
- $a bodová mutace $7 D017354
- 650 _2
- $a guide RNA, Kinetoplastida $7 D017394
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $7 D012441
- 650 _2
- $a Yarrowia $x genetika $7 D025062
- 650 _2
- $a kvasinky $x genetika $7 D015003
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Weninger, Astrid $u Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.
- 700 1_
- $a Glieder, Anton $u Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.
- 700 1_
- $a Kovar, Karin $u Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland.
- 700 1_
- $a Vogl, Thomas $u Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Electronic address: thomas.vogl@weizmann.ac.il.
- 773 0_
- $w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 36, č. 3 (2018), s. 641-665
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29331410 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190405092647 $b ABA008
- 999 __
- $a ok $b bmc $g 1392226 $s 1051221
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 36 $c 3 $d 641-665 $e 20180110 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
- LZP __
- $a Pubmed-20190405