-
Je něco špatně v tomto záznamu ?
Comparison of Different Electrocardiography with Vectorcardiography Transformations
R. Jaros, R. Martinek, L. Danys,
Jazyk angličtina Země Švýcarsko
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
Project No. SP2019/85 and SP2019/118
Ministry of Education of the Czech Republic
project number CZ.02.1.01/0.0/0.0/16_019/0000867
European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project
CZ.02.1.01/0.0/0.0/17_049/0008425
European Regional Development Fund in A Research Platform focused on Industry 4.0 and Robotics in Ostrava project
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
31336798
DOI
10.3390/s19143072
Knihovny.cz E-zdroje
- MeSH
- databáze faktografické MeSH
- diagnóza počítačová metody MeSH
- elektrokardiografie metody MeSH
- lidé MeSH
- lineární modely MeSH
- matematické výpočty počítačové MeSH
- nemoci srdce diagnóza MeSH
- počítačové zpracování signálu * MeSH
- vektorkardiografie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
This paper deals with transformations from electrocardiographic (ECG) to vectorcardiographic (VCG) leads. VCG provides better sensitivity, for example for the detection of myocardial infarction, ischemia, and hypertrophy. However, in clinical practice, measurement of VCG is not usually used because it requires additional electrodes placed on the patient's body. Instead, mathematical transformations are used for deriving VCG from 12-leads ECG. In this work, Kors quasi-orthogonal transformation, inverse Dower transformation, Kors regression transformation, and linear regression-based transformations for deriving P wave (PLSV) and QRS complex (QLSV) are implemented and compared. These transformation methods were not yet compared before, so we have selected them for this paper. Transformation methods were compared for the data from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated using a mean squared error (MSE) and a correlation coefficient (R) between the derived and directly measured Frank's leads. Based on the statistical analysis, Kors regression transformation was significantly more accurate for the derivation of the X and Y leads than the others. For the Z lead, there were no statistically significant differences in the medians between Kors regression transformation and the PLSV and QLSV methods. This paper thoroughly compared multiple VCG transformation methods to conventional VCG Frank's orthogonal lead system, used in clinical practice.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006124
- 003
- CZ-PrNML
- 005
- 20200518132342.0
- 007
- ta
- 008
- 200511s2019 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s19143072 $2 doi
- 035 __
- $a (PubMed)31336798
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Jaros, Rene $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic. rene.jaros@vsb.cz.
- 245 10
- $a Comparison of Different Electrocardiography with Vectorcardiography Transformations / $c R. Jaros, R. Martinek, L. Danys,
- 520 9_
- $a This paper deals with transformations from electrocardiographic (ECG) to vectorcardiographic (VCG) leads. VCG provides better sensitivity, for example for the detection of myocardial infarction, ischemia, and hypertrophy. However, in clinical practice, measurement of VCG is not usually used because it requires additional electrodes placed on the patient's body. Instead, mathematical transformations are used for deriving VCG from 12-leads ECG. In this work, Kors quasi-orthogonal transformation, inverse Dower transformation, Kors regression transformation, and linear regression-based transformations for deriving P wave (PLSV) and QRS complex (QLSV) are implemented and compared. These transformation methods were not yet compared before, so we have selected them for this paper. Transformation methods were compared for the data from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated using a mean squared error (MSE) and a correlation coefficient (R) between the derived and directly measured Frank's leads. Based on the statistical analysis, Kors regression transformation was significantly more accurate for the derivation of the X and Y leads than the others. For the Z lead, there were no statistically significant differences in the medians between Kors regression transformation and the PLSV and QLSV methods. This paper thoroughly compared multiple VCG transformation methods to conventional VCG Frank's orthogonal lead system, used in clinical practice.
- 650 _2
- $a databáze faktografické $7 D016208
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a elektrokardiografie $x metody $7 D004562
- 650 _2
- $a nemoci srdce $x diagnóza $7 D006331
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a matematické výpočty počítačové $7 D008432
- 650 12
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a vektorkardiografie $x metody $7 D014672
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Martinek, Radek $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic. radek.martinek@vsb.cz.
- 700 1_
- $a Danys, Lukas $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic.
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 19, č. 14 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31336798 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200518132342 $b ABA008
- 999 __
- $a ok $b bmc $g 1524982 $s 1096180
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 19 $c 14 $e 20190711 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- GRA __
- $a Project No. SP2019/85 and SP2019/118 $p Ministry of Education of the Czech Republic
- GRA __
- $a project number CZ.02.1.01/0.0/0.0/16_019/0000867 $p European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project
- GRA __
- $a CZ.02.1.01/0.0/0.0/17_049/0008425 $p European Regional Development Fund in A Research Platform focused on Industry 4.0 and Robotics in Ostrava project
- LZP __
- $a Pubmed-20200511