-
Je něco špatně v tomto záznamu ?
Small RNA-Sequencing for Analysis of Circulating miRNAs: Benchmark Study
P. Androvic, S. Benesova, E. Rohlova, M. Kubista, L. Valihrach
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1999
Freely Accessible Science Journals
od 1999 do Před 1 rokem
- MeSH
- benchmarking MeSH
- cirkulující mikroRNA * genetika MeSH
- lidé MeSH
- mikro RNA * genetika MeSH
- sekvenční analýza RNA metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Small RNA-sequencing (RNA-Seq) is being increasingly used for profiling of circulating microRNAs (miRNAs), a new group of promising biomarkers. Unfortunately, small RNA-Seq protocols are prone to biases limiting quantification accuracy, which motivated development of several novel methods. Here, we present comparison of all small RNA-Seq library preparation approaches that are commercially available for quantification of miRNAs in biofluids. Using synthetic and human plasma samples, we compared performance of traditional two-adaptor ligation protocols (Lexogen, Norgen), as well as methods using randomized adaptors (NEXTflex), polyadenylation (SMARTer), circularization (RealSeq), capture probes (EdgeSeq), or unique molecular identifiers (QIAseq). There was no single protocol outperforming others across all metrics. Limited overlap of measured miRNA profiles was documented between methods largely owing to protocol-specific biases. Methods designed to minimize bias largely differ in their performance, and contributing factors were identified. Usage of unique molecular identifiers has rather negligible effect and, if designed incorrectly, can even introduce spurious results. Together, these results identify strengths and weaknesses of all current methods and provide guidelines for applications of small RNA-Seq in biomarker research.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22019002
- 003
- CZ-PrNML
- 005
- 20220804135247.0
- 007
- ta
- 008
- 220720s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jmoldx.2021.12.006 $2 doi
- 035 __
- $a (PubMed)35081459
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Androvic, Peter $u Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
- 245 10
- $a Small RNA-Sequencing for Analysis of Circulating miRNAs: Benchmark Study / $c P. Androvic, S. Benesova, E. Rohlova, M. Kubista, L. Valihrach
- 520 9_
- $a Small RNA-sequencing (RNA-Seq) is being increasingly used for profiling of circulating microRNAs (miRNAs), a new group of promising biomarkers. Unfortunately, small RNA-Seq protocols are prone to biases limiting quantification accuracy, which motivated development of several novel methods. Here, we present comparison of all small RNA-Seq library preparation approaches that are commercially available for quantification of miRNAs in biofluids. Using synthetic and human plasma samples, we compared performance of traditional two-adaptor ligation protocols (Lexogen, Norgen), as well as methods using randomized adaptors (NEXTflex), polyadenylation (SMARTer), circularization (RealSeq), capture probes (EdgeSeq), or unique molecular identifiers (QIAseq). There was no single protocol outperforming others across all metrics. Limited overlap of measured miRNA profiles was documented between methods largely owing to protocol-specific biases. Methods designed to minimize bias largely differ in their performance, and contributing factors were identified. Usage of unique molecular identifiers has rather negligible effect and, if designed incorrectly, can even introduce spurious results. Together, these results identify strengths and weaknesses of all current methods and provide guidelines for applications of small RNA-Seq in biomarker research.
- 650 _2
- $a benchmarking $7 D019985
- 650 12
- $a cirkulující mikroRNA $x genetika $7 D000074166
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a mikro RNA $x genetika $7 D035683
- 650 _2
- $a sekvenční analýza RNA $x metody $7 D017423
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Benesova, Sarka $u Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic; Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Rohlova, Eva $u Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic; Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
- 700 1_
- $a Kubista, Mikael $u Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic; TATAA Biocenter AB, Gothenburg, Sweden
- 700 1_
- $a Valihrach, Lukas $u Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic. Electronic address: lukas.valihrach@ibt.cas.cz
- 773 0_
- $w MED00012712 $t The Journal of molecular diagnostics : JMD $x 1943-7811 $g Roč. 24, č. 4 (2022), s. 386-394
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35081459 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804135240 $b ABA008
- 999 __
- $a ok $b bmc $g 1822557 $s 1170245
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 24 $c 4 $d 386-394 $e 20220123 $i 1943-7811 $m The Journal of molecular diagnostics $n J Mol Diagn $x MED00012712
- LZP __
- $a Pubmed-20220720