• Je něco špatně v tomto záznamu ?

A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results From a Multicenter Study

B. Pardini, G. Ferrero, S. Tarallo, G. Gallo, A. Francavilla, N. Licheri, M. Trompetto, G. Clerico, C. Senore, S. Peyre, V. Vymetalkova, L. Vodickova, V. Liska, O. Vycital, M. Levy, P. Macinga, T. Hucl, E. Budinska, P. Vodicka, F. Cordero, A. Naccarati

. 2023 ; 165 (3) : 582-599.e8. [pub] 20230530

Jazyk angličtina Země Spojené státy americké

Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016424

BACKGROUND & AIMS: Fecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis. METHODS: A total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples. RESULTS: Twenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79-0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92-1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71-0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients. CONCLUSIONS: Our comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016424
003      
CZ-PrNML
005      
20231026105856.0
007      
ta
008      
231013s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1053/j.gastro.2023.05.037 $2 doi
035    __
$a (PubMed)37263306
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pardini, Barbara $u Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy. Electronic address: barbara.pardini@iigm.it
245    12
$a A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results From a Multicenter Study / $c B. Pardini, G. Ferrero, S. Tarallo, G. Gallo, A. Francavilla, N. Licheri, M. Trompetto, G. Clerico, C. Senore, S. Peyre, V. Vymetalkova, L. Vodickova, V. Liska, O. Vycital, M. Levy, P. Macinga, T. Hucl, E. Budinska, P. Vodicka, F. Cordero, A. Naccarati
520    9_
$a BACKGROUND & AIMS: Fecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis. METHODS: A total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples. RESULTS: Twenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79-0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92-1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71-0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients. CONCLUSIONS: Our comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies.
650    _2
$a lidé $7 D006801
650    12
$a mikro RNA $x analýza $7 D035683
650    _2
$a průřezové studie $7 D003430
650    _2
$a nádorové biomarkery $x analýza $7 D014408
650    12
$a kolorektální nádory $x diagnóza $x genetika $7 D015179
650    _2
$a sekvenční analýza RNA $7 D017423
650    12
$a adenom $x diagnóza $x genetika $7 D000236
655    _2
$a multicentrická studie $7 D016448
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ferrero, Giulio $u Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; Department of Computer Science, University of Turin, Turin, Italy
700    1_
$a Tarallo, Sonia $u Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
700    1_
$a Gallo, Gaetano $u Department of Surgery, Sapienza University of Rome, Rome, Italy; Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
700    1_
$a Francavilla, Antonio $u Italian Institute for Genomic Medicine, Turin, Italy
700    1_
$a Licheri, Nicola $u Department of Computer Science, University of Turin, Turin, Italy
700    1_
$a Trompetto, Mario $u Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
700    1_
$a Clerico, Giuseppe $u Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
700    1_
$a Senore, Carlo $u Epidemiology and Screening Unit-CPO, University Hospital Città della Salute e della Scienza, Turin, Italy
700    1_
$a Peyre, Sergio $u LILT (Lega Italiana Lotta contro i Tumori), associazione provinciale di Biella, Biella, Italy
700    1_
$a Vymetalkova, Veronika $u Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
700    1_
$a Vodickova, Ludmila $u Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
700    1_
$a Liska, Vaclav $u Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
700    1_
$a Vycital, Ondrej $u Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
700    1_
$a Levy, Miroslav $u Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
700    1_
$a Macinga, Peter $u Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
700    1_
$a Hucl, Tomas $u Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
700    1_
$a Budinska, Eva $u RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
700    1_
$a Vodicka, Pavel $u Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
700    1_
$a Cordero, Francesca $u Department of Computer Science, University of Turin, Turin, Italy
700    1_
$a Naccarati, Alessio $u Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy. Electronic address: alessio.naccarati@iigm.it
773    0_
$w MED00001877 $t Gastroenterology $x 1528-0012 $g Roč. 165, č. 3 (2023), s. 582-599.e8
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37263306 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105850 $b ABA008
999    __
$a ok $b bmc $g 2000124 $s 1202786
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 165 $c 3 $d 582-599.e8 $e 20230530 $i 1528-0012 $m Gastroenterology $n Gastroenterology $x MED00001877
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...