• Je něco špatně v tomto záznamu ?

Influence of hand grip strength test and short physical performance battery on FRAX in post-menopausal women: a machine learning cross-sectional study

A. de Sire, N. Marotta, E. Prestifilippo, D. Calafiore, L. Lippi, C. Sconza, L. Muraca, M. Invernizzi, K. Mezian, A. Ammendolia

. 2024 ; 64 (3) : 293-300. [pub] 20231221

Jazyk angličtina Země Itálie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24006941

BACKGROUND: Impaired physical performance and muscle strength are recognized risk factors for fragility fractures, frequently associated with osteoporosis and sarcopenia. However, the integration of muscle strength and physical performance in the comprehensive assessment of fracture risk is still debated. Therefore, this cross-sectional study aimed to assess the potential role of hand grip strength (HGS) and short physical performance battery (SPPB) for predicting fragility fractures and their correlation with Fracture Risk Assessment Tool (FRAX) with a machine learning approach. METHODS: In this cross-sectional study, a group of postmenopausal women underwent assessment of their strength, with the outcome measured using the HSG, their physical performance evaluated using the SPPB, and the predictive algorithm for fragility fractures known as FRAX. The statistical analysis included correlation analysis using Pearson's r and a decision tree model to compare different variables and their relationship with the FRAX Index. This machine learning approach allowed to create a visual decision boundaries plot, providing a dynamic representation of variables interactions in predicting fracture risk. RESULTS: Thirty-four patients (mean age 63.8±10.7 years) were included. Both HGS and SPPB negatively correlate with FRAX major (r=-0.381, P=0.034; and r=-0.407, P=0.023 respectively), whereas only SPPB significantly correlated with an inverse proportionality to FRAX hip (r=-0.492, P=0.001). According to a machine learning approach, FRAX major ≥20 and/or hip ≥3 might be reported for an SPPB<6. Concurrently, HGS<17.5 kg correlated with FRAX major ≥20 and/or hip ≥3. CONCLUSIONS: In light of the major findings, this cross-sectional study using a machine learning model related SPPB and HGS to FRAX. Therefore, a precise assessment including muscle strength and physical performance might be considered in the multidisciplinary assessment of fracture risk in post-menopausal women.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24006941
003      
CZ-PrNML
005      
20240423155608.0
007      
ta
008      
240412s2024 it f 000 0|eng||
009      
AR
024    7_
$a 10.23736/S0022-4707.23.15417-X $2 doi
035    __
$a (PubMed)38126971
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a it
100    1_
$a de Sire, Alessandro $u Department of Medical and Surgical Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy - alessandro.desire@unicz.it $u MusculoSkeletalHealth@UMG, The Magna Græcia University of Catanzaro, Catanzaro, Italy - alessandro.desire@unicz.it $u Department of Rehabilitation and Sports Medicine, Second Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic - alessandro.desire@unicz.it
245    10
$a Influence of hand grip strength test and short physical performance battery on FRAX in post-menopausal women: a machine learning cross-sectional study / $c A. de Sire, N. Marotta, E. Prestifilippo, D. Calafiore, L. Lippi, C. Sconza, L. Muraca, M. Invernizzi, K. Mezian, A. Ammendolia
520    9_
$a BACKGROUND: Impaired physical performance and muscle strength are recognized risk factors for fragility fractures, frequently associated with osteoporosis and sarcopenia. However, the integration of muscle strength and physical performance in the comprehensive assessment of fracture risk is still debated. Therefore, this cross-sectional study aimed to assess the potential role of hand grip strength (HGS) and short physical performance battery (SPPB) for predicting fragility fractures and their correlation with Fracture Risk Assessment Tool (FRAX) with a machine learning approach. METHODS: In this cross-sectional study, a group of postmenopausal women underwent assessment of their strength, with the outcome measured using the HSG, their physical performance evaluated using the SPPB, and the predictive algorithm for fragility fractures known as FRAX. The statistical analysis included correlation analysis using Pearson's r and a decision tree model to compare different variables and their relationship with the FRAX Index. This machine learning approach allowed to create a visual decision boundaries plot, providing a dynamic representation of variables interactions in predicting fracture risk. RESULTS: Thirty-four patients (mean age 63.8±10.7 years) were included. Both HGS and SPPB negatively correlate with FRAX major (r=-0.381, P=0.034; and r=-0.407, P=0.023 respectively), whereas only SPPB significantly correlated with an inverse proportionality to FRAX hip (r=-0.492, P=0.001). According to a machine learning approach, FRAX major ≥20 and/or hip ≥3 might be reported for an SPPB<6. Concurrently, HGS<17.5 kg correlated with FRAX major ≥20 and/or hip ≥3. CONCLUSIONS: In light of the major findings, this cross-sectional study using a machine learning model related SPPB and HGS to FRAX. Therefore, a precise assessment including muscle strength and physical performance might be considered in the multidisciplinary assessment of fracture risk in post-menopausal women.
650    _2
$a lidé $7 D006801
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé středního věku $7 D008875
650    _2
$a senioři $7 D000368
650    12
$a kostní denzita $x fyziologie $7 D015519
650    12
$a osteoporotické fraktury $x epidemiologie $x etiologie $7 D058866
650    _2
$a průřezové studie $7 D003430
650    _2
$a postmenopauza $7 D017698
650    _2
$a síla ruky $7 D018737
650    _2
$a hodnocení rizik $7 D018570
650    _2
$a rizikové faktory $7 D012307
650    _2
$a tělesná a funkční výkonnost $7 D000076604
655    _2
$a časopisecké články $7 D016428
700    1_
$a Marotta, Nicola $u MusculoSkeletalHealth@UMG, The Magna Græcia University of Catanzaro, Catanzaro, Italy $u Department of Experimental and Clinical Medicine, The Magna Græcia University of Catanzaro, Catanzaro, Italy
700    1_
$a Prestifilippo, Emanuele $u Department of Medical and Surgical Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
700    1_
$a Calafiore, Dario $u Unit of Physical Medicine and Rehabilitation, Department of Neurosciences, ASST Carlo Poma, Mantua, Italy
700    1_
$a Lippi, Lorenzo $u Department of Health Sciences, University of Eastern Piedmont, Novara, Italy $u Unit of Translational Medicine, Department of Integrated Activities Research and Innovation, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
700    1_
$a Sconza, Cristiano $u Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy $u IRCCS Humanitas Clinic, Rozzano, Milan, Italy
700    1_
$a Muraca, Lucia $u Department of General Medicine, ASP 203, Catanzaro, Italy $u FAS@UMG Research Center, The Magna Græcia University of Catanzaro, Catanzaro, Italy
700    1_
$a Invernizzi, Marco $u Department of Health Sciences, University of Eastern Piedmont, Novara, Italy $u Unit of Translational Medicine, Department of Integrated Activities Research and Innovation, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
700    1_
$a Mezian, Kamal $u Department of Rehabilitation Medicine, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czech Republic
700    1_
$a Ammendolia, Antonio $u Department of Medical and Surgical Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy $u MusculoSkeletalHealth@UMG, The Magna Græcia University of Catanzaro, Catanzaro, Italy
773    0_
$w MED00002948 $t Journal of Sports Medicine and Physical Fitness $x 1827-1928 $g Roč. 64, č. 3 (2024), s. 293-300
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38126971 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155604 $b ABA008
999    __
$a ok $b bmc $g 2081115 $s 1216708
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 64 $c 3 $d 293-300 $e 20231221 $i 1827-1928 $m Journal of Sports Medicine and Physical Fitness $n J Sports Med Phys Fitness $x MED00002948
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...