• Je něco špatně v tomto záznamu ?

Ultrasensitive allele inference from immune repertoire sequencing data with MiXCR

A. Mikelov, G. Nefediev, A. Tashkeev, OL. Rodriguez, D. Aguilar Ortmans, V. Skatova, M. Izraelson, AN. Davydov, S. Poslavsky, S. Rahmouni, CT. Watson, D. Chudakov, SD. Boyd, D. Bolotin

. 2024 ; 34 (12) : 2293-2303. [pub] 20241223

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25002981

Grantová podpora
U19 AI057229 NIAID NIH HHS - United States
U19 AI167903 NIAID NIH HHS - United States

E-zdroje Online Plný text

NLK Free Medical Journals od 1991 do Před 6 měsíci
Freely Accessible Science Journals od 1991-08-01 do Před 1 rokem
PubMed Central od 1997 do Před 6 měsíci
Europe PubMed Central od 1997 do Před 6 měsíci
Open Access Digital Library od 1991-08-01
Open Access Digital Library od 1991-08-01

Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), is of critical importance for immune responses to pathogens and vaccines. Adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here, we present a novel algorithm for extrasensitive and specific variable (V) and joining (J) gene allele inference, allowing the reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput novel allele discovery from a wide variety of existing data sets. The developed algorithm is a part of the MiXCR software. We demonstrate the accuracy of this approach using AIRR-seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (IGH) AIRR-seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA and TRB) AIRR-seq data set, representing 134 individuals. This allowed us to assess the genetic diversity within the IGH, TRA, and TRB loci in different populations and to establish a database of alleles of V and J genes inferred from AIRR-seq data and their population frequencies with free public access through VDJ.online database.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25002981
003      
CZ-PrNML
005      
20250206104007.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1101/gr.278775.123 $2 doi
035    __
$a (PubMed)39433438
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mikelov, Artem $u Department of Pathology, Stanford University, Stanford, California 94305, USA; amikelov@stanford.edu bolotin@milaboratories.com $1 https://orcid.org/0000000216292373
245    10
$a Ultrasensitive allele inference from immune repertoire sequencing data with MiXCR / $c A. Mikelov, G. Nefediev, A. Tashkeev, OL. Rodriguez, D. Aguilar Ortmans, V. Skatova, M. Izraelson, AN. Davydov, S. Poslavsky, S. Rahmouni, CT. Watson, D. Chudakov, SD. Boyd, D. Bolotin
520    9_
$a Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), is of critical importance for immune responses to pathogens and vaccines. Adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here, we present a novel algorithm for extrasensitive and specific variable (V) and joining (J) gene allele inference, allowing the reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput novel allele discovery from a wide variety of existing data sets. The developed algorithm is a part of the MiXCR software. We demonstrate the accuracy of this approach using AIRR-seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (IGH) AIRR-seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA and TRB) AIRR-seq data set, representing 134 individuals. This allowed us to assess the genetic diversity within the IGH, TRA, and TRB loci in different populations and to establish a database of alleles of V and J genes inferred from AIRR-seq data and their population frequencies with free public access through VDJ.online database.
650    _2
$a lidé $7 D006801
650    12
$a alely $7 D000483
650    12
$a algoritmy $7 D000465
650    12
$a software $7 D012984
650    _2
$a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
650    _2
$a receptory antigenů T-buněk $x genetika $x imunologie $7 D011948
650    _2
$a receptory antigenů B-buněk $x genetika $x imunologie $7 D011947
650    _2
$a genetická variace $7 D014644
650    _2
$a sekvenční analýza DNA $x metody $7 D017422
655    _2
$a časopisecké články $7 D016428
700    1_
$a Nefediev, George $u MiLaboratories Incorporated, San Francisco, California 94114, USA
700    1_
$a Tashkeev, Alexander $u Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium $1 https://orcid.org/0000000255092163
700    1_
$a Rodriguez, Oscar L $u Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
700    1_
$a Aguilar Ortmans, Diego $u Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium
700    1_
$a Skatova, Valeriia $u MiLaboratories Incorporated, San Francisco, California 94114, USA $1 https://orcid.org/0000000226550022
700    1_
$a Izraelson, Mark $u MiLaboratories Incorporated, San Francisco, California 94114, USA $1 https://orcid.org/0000000186069575
700    1_
$a Davydov, Alexey N $u MiLaboratories Incorporated, San Francisco, California 94114, USA $u Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic
700    1_
$a Poslavsky, Stanislav $u MiLaboratories Incorporated, San Francisco, California 94114, USA $1 https://orcid.org/0000000332361452
700    1_
$a Rahmouni, Souad $u Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium
700    1_
$a Watson, Corey T $u Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA $1 https://orcid.org/0000000172488787
700    1_
$a Chudakov, Dmitriy $u MiLaboratories Incorporated, San Francisco, California 94114, USA $u Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic $1 https://orcid.org/0000000162734008
700    1_
$a Boyd, Scott D $u Department of Pathology, Stanford University, Stanford, California 94305, USA $1 https://orcid.org/000000030963044X
700    1_
$a Bolotin, Dmitry $u MiLaboratories Incorporated, San Francisco, California 94114, USA; amikelov@stanford.edu bolotin@milaboratories.com $1 https://orcid.org/0000000284846067
773    0_
$w MED00001911 $t Genome research $x 1549-5469 $g Roč. 34, č. 12 (2024), s. 2293-2303
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39433438 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104003 $b ABA008
999    __
$a ok $b bmc $g 2263029 $s 1238988
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 34 $c 12 $d 2293-2303 $e 20241223 $i 1549-5469 $m Genome research $n Genome Res $x MED00001911
GRA    __
$a U19 AI057229 $p NIAID NIH HHS $2 United States
GRA    __
$a U19 AI167903 $p NIAID NIH HHS $2 United States
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...