Molecular analysis of the genus Anoxybacillus based on sequence similarity of the genes recN, flaA, and ftsY

. 2012 Jan ; 57 (1) : 61-9. [epub] 20120106

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22223049

Genome predictions based on selected genes would be a very welcome approach for taxonomic studies. We analyzed three genes, recN, flaA, and ftsY, for determining if these genes are useful tools for systematic analyses in the genus Anoxybacillus. The genes encoding a DNA repair and genetic recombination protein (recN), the flagellin protein (flaA), and GTPase signal docking protein (ftsY) were sequenced for ten Anoxybacillus species. The sequence comparisons revealed that recN sequence similarities range between 61% and 99% in the genus Anoxybacillus. Comparisons to other bacterial recN genes indicated that levels of similarity did not differ from the levels within genus Anoxybacillus. These data showed that recN is not a useful marker for the genus Anoxybacillus. A 550-600-bp region of the flagellin gene was amplified for all Anoxybacillus strains except for Anoxybacillus contaminans. The sequence similarity of flaA gene varies between 61% and 76%. Comparisons to other bacterial flagellin genes obtained from GenBank (Bacillus, Pectinatus, Proteus, and Vibrio) indicated that the levels of similarity were lower (3-42%). Based on these data, we concluded that the variability in this single gene makes it a particularly useful marker. Another housekeeping gene ftsY suggested to reflect the G+C (mol/mol) content of whole genome was analyzed for Anoxybacillus strains. A mean difference of 1.4% was observed between the G+C content of the gene ftsY and the G+C content of the whole genome. These results showed that the gene ftsY can be used to represent whole G+C content of the Anoxybacillus species.

Zobrazit více v PubMed

J Clin Microbiol. 1992 Jan;30(1):99-114 PubMed

J Mol Biol. 1962 Jul;5:109-18 PubMed

Int J Syst Evol Microbiol. 2004 May;54(Pt 3):941-946 PubMed

Extremophiles. 2007 Jul;11(4):577-83 PubMed

Syst Appl Microbiol. 2006 Jun;29(4):300-7 PubMed

Appl Environ Microbiol. 1993 Dec;59(12):4090-5 PubMed

Microbiol Rev. 1987 Jun;51(2):221-71 PubMed

Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1315-1320 PubMed

Lett Appl Microbiol. 1996 Nov;23(5):363-6 PubMed

Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:2109-2117 PubMed

J Mol Evol. 1980 Dec;16(2):111-20 PubMed

FEMS Microbiol Lett. 1990 Jan 15;55(1-2):127-30 PubMed

Microbiology (Reading). 1997 Oct;143 ( Pt 10):3071-3084 PubMed

Int J Syst Evol Microbiol. 2011 Jan;61(Pt 1):118-122 PubMed

Int J Syst Evol Microbiol. 2006 May;56(Pt 5):1025-1029 PubMed

Mol Microbiol. 1991 May;5(5):1151-8 PubMed

FEMS Microbiol Rev. 2001 Jan;25(1):39-67 PubMed

Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed

Lett Appl Microbiol. 1995 Jan;20(1):65-8 PubMed

Int J Syst Evol Microbiol. 2002 May;52(Pt 3):1043-1047 PubMed

Mikrobiologiia. 2010 Jul-Aug;79(4):516-23 PubMed

Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1499-1503 PubMed

Int J Syst Evol Microbiol. 2008 Oct;58(Pt 10):2359-62 PubMed

Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1893-900 PubMed

J Bacteriol. 1970 Feb;101(2):333-8 PubMed

Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1239-1242 PubMed

Extremophiles. 2005 Oct;9(5):391-8 PubMed

Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 PubMed

Int J Syst Evol Microbiol. 2005 May;55(Pt 3):1171-1179 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...