Critical evaluation of colon submucosal microdialysis in awake, mobile rats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29324792
PubMed Central
PMC5764360
DOI
10.1371/journal.pone.0191041
PII: PONE-D-17-24414
Knihovny.cz E-zdroje
- MeSH
- glukosa metabolismus MeSH
- kolon krevní zásobení fyziologie MeSH
- krysa rodu Rattus MeSH
- kyselina mléčná metabolismus MeSH
- mikrocirkulace MeSH
- mikrodialýza MeSH
- močovina metabolismus MeSH
- potkani Wistar MeSH
- střevní sliznice fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- kyselina mléčná MeSH
- močovina MeSH
Sensors able to record large bowel physiology and biochemistry in situ in awake rodents are lacking. Microdialysis is a mini-invasive technique that may be utilized to continuously deliver or recover low-molecular substances from various tissues. In this experiment we evaluated the feasibility of in vivo microdialysis to monitor extracellular fluid chemistry in the descending colon submucosa of conscious, freely moving rodents. Following surgical implantation of a microdialysis probe, male Wistar rats were housed in metabolic cages where they were analgized and clinically followed for four days with free access to standard diet and water. To assess local microcirculation and probe function, glucose, lactate, glucose-to-lactate ratio and urea clearance were determined in the dialysates from the three postoperative days with focus on the final 24-h period. In an attempt to mitigate the expected tissue inflammatory response, one group of animals had the catheters perfused with 5-aminosalicylic acid-enriched medium with final concentration 1 μmol/L. For verification of probe position and the assessment of the surrounding foreign body reaction, standard histological and immunohistochemical methods were employed. Microdialysis of rat gut is associated with considerable technical challenges that may lead to the loss of probe function and high drop-out rate. In this setting, limited data did not allow to draw any firm conclusion regarding local anti-inflammatory effectiveness of 5-aminosalicylic acid perfusion. Although intestinal microdialysis may be suitable for larger anesthetized animals, low reproducibility of the presented method compromises its routine experimental use in awake and freely moving small-sized rodents.
Zobrazit více v PubMed
Högberg N, Carlsson PO, Hillered L, Meurling S, Stenbäck A. Intestinal ischemia measured by intraluminal microdialysis. Scand J Clin Lab Invest. 2012; 72:59–66. doi: 10.3109/00365513.2011.629307 PubMed DOI
Solligård E, Juel IS, Spigset O, Romundstad P, Grønbech JE, Aadahl P. Gut luminal lactate measured by microdialysis mirrors permeability of the intestinal mucosa after ischemia. Shock. 2008; 29:245–51. doi: 10.1097/SHK.0b013e3180cab3ce PubMed DOI
Cibicek N, Zivná H, Zadák Z, Kulír J, Cermáková E, Palicka V. Colon submucosal microdialysis: a novel in vivo approach in barrier function assessment—a pilot study in rats. Physiol Res. 2007; 56:611–7. PubMed
Fröjse R, Lehtipalo S, Bergstrand U, Biber B, Winsö O, Johansson G, et al. Local metabolic effects of dopexamine on the intestine during mesenteric hypoperfusion. Shock. 2004; 21:241–7. doi: 10.1097/01.shk.0000111826.07309.8b PubMed DOI
Bjarnason I, O'Morain C, Levi AJ, Peters TJ. Absorption of 51chromium-labeled ethylenediaminetetraacetate in inflammatory bowel disease. Gastroenterology. 1983; 85:318–22. PubMed
Iwaya H, Maeta K, Hara H, Ishizuka S. Mucosal permeability is an intrinsic factor in susceptibility to dextran sulfate sodium-induced colitis in rats. Exp Biol Med (Maywood). 2012; 237:451–60. doi: 10.1258/ebm.2011.011269 PubMed DOI
Kobayashi N, Fujimori I, Watanabe M, Ikeda T. Real-time monitoring of metabolic reactions by microdialysis in combination with tandem mass spectrometry: hydrolysis of CS-866 in vitro in human and rat plasma, livers, and small intestines. Anal Biochem. 2000; 287:272–8. doi: 10.1006/abio.2000.4840 PubMed DOI
Pynnönen L, Minkkinen M, Perner A, Räty S, Nordback I, Sand J, et al. Validation of intraluminal and intraperitoneal microdialysis in ischemic small intestine. BMC Gastroenterol. 2013; 13:170–8. doi: 10.1186/1471-230X-13-170 PubMed DOI PMC
Boerma EC, Kaiferová K, Konijn AJ, De Vries JW, Buter H, Ince C. Rectal microcirculatory alterations after elective on-pump cardiac surgery. Minerva Anestesiol. 2011; 77:698–703. PubMed
Woo KL, Lunte CE. The direct comparison of health and ulcerated stomach tissue: a multiple probe microdialysis sampling approach. J Pharm Biomed Anal. 2008; 48:85–91. doi: 10.1016/j.jpba.2008.05.014 PubMed DOI PMC
Obata T, Yamanaka Y. Adenosine deaminase activity in rat intestine: assay with a microdialysis technique. Comp Biochem Physiol A Mol Integr Physiol. 1998; 119:309–13. PubMed
Udassin R, Haskel Y, Seror D, Welbourne TC. Plasma-to-lumen clearance of para-aminohippurate can replace 51Cr EDTA clearance in the evaluation of intestinal mucosal injury. Pediatr Surg Int. 1998; 13:112–4. doi: 10.1007/s003830050261 PubMed DOI
Pedersen ME, Dahl M, Qvist N. Intraperitoneal microdialysis in the postoperative surveillance after surgery for necrotizing enterocolitis: a preliminary report. J Pediatr Surg. 2011; 46:352–6. doi: 10.1016/j.jpedsurg.2010.11.015 PubMed DOI
Jansson K, Ungerstedt J, Jonsson T, Redler B, Andersson M, Ungerstedt U, et al. Human intraperitoneal microdialysis: increased lactate/pyruvate ratio suggests early visceral ischaemia. A pilot study. Scand J Gastroenterol. 2003; 38:1007–11. PubMed
Ericsson P, Håkanson R, Norlén P. Gastrin response to candidate messengers in intact conscious rats monitored by antrum microdialysis. Regul Pept. 2010; 163:24–30. doi: 10.1016/j.regpep.2010.03.006 PubMed DOI
Beier H, Kaiser K, Langhans M, Malmendier K, Sluijsmans I, Weiher J. Peritoneal microdialysis in freely moving rodents: an alternative to blood sampling for pharmacokinetic studies in the rat and the mouse. Eur J Pharm Sci. 2007; 30:75–83. doi: 10.1016/j.ejps.2006.10.005 PubMed DOI
Kitano M, Norlén P, Håkanson R. Gastric submucosal microdialysis: a method to study gastrin- and food-evoked mobilization of ECL-cell histamine in conscious rats. Regul Pept. 2000; 86:113–23. PubMed
Plock N, Kloft C. Microdialysis—theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci. 2005; 25:1–24. doi: 10.1016/j.ejps.2005.01.017 PubMed DOI
Liang M, Feng K, Yang X, Chen G, Tang Z, Lin W, et al. Moderate Hypothermia Provides Better Protection of the Intestinal Barrier than Deep Hypothermia during Circulatory Arrest in a Piglet Model: A Microdialysis Study. PLoS One. 2016; 11(9):e0163684 doi: 10.1371/journal.pone.0163684 PubMed DOI PMC
Cibicek N, Zivna H, Vrublova E, Cibicek J, Cermakova E, Palicka V. Gastric submucosal microdialysis in the detection of rat stomach ischemia—a comparison of the 3H2O efflux technique with metabolic monitoring. Physiol Meas. 2010; 31:1355–68. doi: 10.1088/0967-3334/31/10/005 PubMed DOI
Farnebo S, Winbladh A, Zettersten EK, Sandström P, Gullstrand P, Samuelsson A, et al. Urea clearance: a new technique based on microdialysis to assess liver blood flow studied in a pig model of ischemia/reperfusion. Eur Surg Res. 2010; 45: 105–12. doi: 10.1159/000319868 PubMed DOI
Mupanomunda MM, Ishioka N, Bukoski RD. Interstitial Ca2+ undergoes dynamic changes sufficient to stimulate nerve-dependent Ca2+-induced relaxation. Am J Physiol. 1999; 276:1035–42. PubMed
Hammarlund-Udenaes M. Microdialysis for characterization of PK/PD relationships In: Westerink BHC, Cremers TIFH, editors. Handbook of microdialysis—methods, applications and clinical aspects. London: Academic Press; 2007. pp. 589–600.
Mou X, Lennartz MR, Loegering DJ, Stenken JA. Long-term calibration considerations during subcutaneous microdialysis sampling in mobile rats. Biomaterials. 2010; 31:4530–9. doi: 10.1016/j.biomaterials.2010.02.016 PubMed DOI PMC
Schwalbe O, Buerger C, Plock N, Joukhadar C, Kloft C. Urea as an endogenous surrogate in human microdialysis to determine relative recovery of drugs: analytics and applications. J Pharm Biomed Anal. 2006; 41:233–9. doi: 10.1016/j.jpba.2005.11.017 PubMed DOI
Lönnroth P, Jansson PA, Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol. 1987; 253:E228–31. doi: 10.1152/ajpendo.1987.253.2.E228 PubMed DOI
Giknis MLA, Clifford ChB. Clinical Laboratory Parameters For Crl:WI(Han)Rats. Charles River Laboratories. 2008; 1:1–14. Available from: http://www.criver.com/files/pdfs/rms/wistarhan/rm_rm_r_wistar_han_clin_lab_parameters_08.aspx.
Boehm O, Zur B, Koch A, Tran N, Freyenhagen R, Hartmann M, et al. Clinical chemistry reference database for Wistar rats and C57/BL6 mice. Biol Chem. 2007; 388(5):547–54. Erratum in: Biol Chem. 2007; 388(11):1255–6. doi: 10.1515/BC.2007.061 PubMed DOI
Farnebo S, Samuelsson A, Henriksson J, Karlander LE, Sjöberg F. Urea clearance: a new method to register local changes in blood flow in rat skeletal muscle based on microdialysis. Clin Physiol Funct Imaging. 2010; 30(1):57–63. doi: 10.1111/j.1475-097X.2009.00904.x PubMed DOI
Bourne JA. Intracerebral microdialysis: 30 years as a tool for the neuroscientist. Clin Exp Pharmacol Physiol. 2003; 30(1–2):16–24. doi: 10.1046/j.1440-1681.2003.03789.x PubMed DOI
Sommer T, Larsen JF. Detection of intestinal ischemia using a microdialysis technique in an animal model. World J Surg. 2003; 27(4):416–20. doi: 10.1007/s00268-002-6594-z PubMed DOI
Jansson K, Strand I, Redler B, Magnuson A, Ungerstedt U, Norgren L. Results of intraperitoneal microdialysis depend on the location of the catheter. Scand J Clin Lab Invest. 2004; 64(1):63–70. PubMed
Ellebaek Pedersen M, Qvist N, Bisgaard C, Kelly U, Bernhard A, Møller Pedersen S. Peritoneal microdialysis. Early diagnosis of anastomotic leakage after low anterior resection for rectosigmoid cancer. Scand J Surg. 2009; 98(3):148–54. doi: 10.1177/145749690909800304 PubMed DOI
Sommer T, Larsen JF. Validation of intramural intestinal microdialysis as a detector of intestinal ischaemia. Scand J Gastroenterol. 2004. May; 39(5):493–9. PubMed
Holbeck S, Grände PO. Hypovolemia is a main factor behind disturbed perfusion and metabolism in the intestine during endotoxemia in cat. Shock. 2002. October; 18(4):367–73. PubMed
Rixen D, Raum M, Holzgraefe B, Schäfer U, Hess S, Tenhunen J, et al. Shock and Trauma Study Group. Local lactate and histamine changes in small bowel circulation measured by microdialysis in pig hemorrhagic shock. Shock. 2002; 18(4):355–9. PubMed
Krejci V, Hiltebrand L, Büchi C, Ali SZ, Contaldo C, Takala J, et al. Decreasing gut wall glucose as an early marker of impaired intestinal perfusion. Crit Care Med. 2006; 34(9):2406–14. doi: 10.1097/01.CCM.0000233855.34344.29 PubMed DOI
Farnebo S, Zettersten EK, Samuelsson A, Tesselaar E, Sjöberg F. Assessment of blood flow changes in human skin by microdialysis urea clearance. Microcirculation. 2011; 18(3):198–204. doi: 10.1111/j.1549-8719.2010.00077.x PubMed DOI
Lippi G, Plebani M. EDTA-dependent pseudothrombocytopenia: further insights and recommendations for prevention of a clinically threatening artifact. Clin Chem Lab Med. 2012; 50(8):1281–5. doi: 10.1515/cclm-2012-0081 PubMed DOI