Small Supernumerary Marker Chromosome May Provide Information on Dosage-insensitive Pericentric Regions in Human

. 2018 Apr ; 19 (3) : 192-199.

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29606906

BACKGROUND: Cytogenetically visible chromosomal imbalances in humans are deleterious and adverse in the majority of the cases. However, healthy persons living with chromosomal imbalances in the range of several megabasepairs (Mbps) in size, like carriers of small Supernumerary Marker Chromosomes (sSMCs) exist. MATERIALS & METHODS: The identification of healthy sSMC carriers with euchromatic centromere-near (ECN) imbalances led to the following proposal: ECN-regions do not contain any dosage sensitive genes. Due to own previous work, dosage-insensitive pericentric ECN-regions were already determined with an accuracy of 0.3 and 5 Mbp. Based on this data we established 43 new pericentromeric probe sets spanning about 3-5 Mbp of each euchromatic human chromosome arm starting from the known insensitive regions towards distal. Such so called pericentromeric-critical region fluorescence in situ hybridization (PeCR-FISH) probe sets were applied exemplarily and successful here in 15 sSMC cases as available from the Else Kröner-Fresenius-sSMC-cellbank . CONCLUSION: Most of the involved sSMC breakpoints could be characterized as a higher resolution than before. An unexpected result was that in 5/15 cases cryptic mosaicism was characterized. The latter is also to be considered to have potentially an influence on the clinical outcome in these so-called discontinuous sSMCs. Overall, the suitability of PeCR-FISH to characterize sSMCs was proven; the potential of this probe set to further delineate sizes of dosage insensitive pericentric regions is obvious but dependent on suited cases. Furthermore, discontinuous sSMCs can be identified by this approach and this new subtype of sSMC needs to be studied in more detail in future.

Zobrazit více v PubMed

Claussen U., Michel S., Mühlig P., Westermann M., Grummt U.W., Kromeyer-Hauschild K., Liehr T. Demystifying chromosome preparation and the implications for the concept of chromosome condensation during mitosis. Cytogenet. Genome Res. 2002;98(2-3):136–146. PubMed

Manolakos E., Vetro A., Kefalas K., Rapti S-M., Louizou E., Garas A., Kitsos G., Vasileiadis L., Tsoplou P., Eleftheriades M., Peitsidis P., Orru S., Liehr T., Petersen M.B., Thomaidis L. The use of array-CGH in a cohort of Greek children with developmental delay. Mol. Cytogenet. 2010;3(1):22. https://molecularcytogenetics.biomedcentral.com/articles/ 10.1186/1755-8166-3-22 PubMed DOI PMC

Liehr T., Weise A., Hamid A.B., Fan X., Klein E., Aust N., Othman M.A., Mrasek K., Kosyakova N. Multicolor FISH methods in current clinical diagnostics. Expert Rev. Mol. Diagn. 2013;13(3):251–255. PubMed

Reddy K.S., Aradhya S., Meck J., Tiller G., Abboy S., Bass H. A systematic analysis of small supernumerary marker chromosomes using array CGH exposes unexpected complexity. Genet. Med. 2013;15(1):3–13. PubMed

Iafrate A.J., Feuk L., Rivera M.N., Listewnik M.L., Donahoe P.K., Qi Y., Scherer S.W., Lee C. Detection of large-scale variation in the human genome. Nat. Genet. 2004;36(9):949–951. PubMed

Sebat J., Lakshmi B., Troge J., Alexander J., Young J., Lundin P., Månér S., Massa H., Walker M., Chi M., Navin N., Lucito R., Healy J., Hicks J., Ye K., Reiner A., Gilliam T.C., Trask B., Patterson N., Zetterberg A., Wigler M. Large-scale copy number polymorphism in the human genome. 2004 https://www.ncbi.nlm.nih.gov/pubmed/ PubMed

Liehr T. Benign & pathological chromosomal imbalances, microscopic and submicroscopic copy number variations (CNVs) in genetics and counseling. 1st ed. New York: Academic Press; 2014.

Barber J.C. Directly transmitted unbalanced chromosome abnormalities and euchromatic variants. J. Med. Genet. 2005;42(8):609–629. PubMed PMC

Liehr T. Small supernumerary marker chromosomes (sSMC). A guide for human geneticists and clinicians; with contributions by Unique (The Rare Chromosome Disorder Support Group). 1st ed. Heidelberg, Dordrecht, London, New York: Springer; 2012.

Hamid A., Weise A., Voigt M., Bucksch M., Kosyakova N., Liehr T., Klein E. Clinical impact of proximal autosomal imbalances. Balkan J. Med. Genet. 2012;15(2):15–22. PubMed PMC

Liehr T. Small supernumerary marker chromosomes. http:// www.fish.uniklinikumjena.de/sSMC.html

Spittel H., Kubek F., Kreskowski K., Ziegler M., Klein E., Hamid A.B., Kosyakova N., Radhakrishnan G., Junge A., Kozlowski P., Schulze B., Martin T., Huhle D., Mehnert K., Rodríguez L., Ergun M.A., Sarri C., Militaru M., Stipoljev F., Tittelbach H., Vasheghani F., de Bello Cioffi M., Hussein S.S., Fan X., Volleth M., Liehr T. Mitotic stability of small supernumerary marker chromosomes: a study based on 93 immortalized cell lines. Cytogenet. Genome Res. 2014;142(3):151–160. PubMed

Liehr T., Klein E., Mrasek K., Kosyakova N., Guilherme R.S., Aust N., Venner C., Weise A., Hamid A.B. Clinical impact of somatic mosaicism in cases with small supernumerary marker chromosomes. Cytogenet. Genome Res. 2013;139(3):158–163. PubMed

Santos M., Mrasek K., Rigola M.A., Starke H., Liehr T., Fuster C. 2007 hub.elsevier.com/retrieve/pii/S0015028207000647 PubMed

Liehr T., editor. Fluorescence in situ hybridization (FISH) - Application guide. 1st ed. Berlin, Heidelberg: Springer; 2009.

Genome Browser U.C.S.C. http://genome.ucsc.edu/cgi-bin/hgGateway

Nietzel A., Rocchi M., Starke H., Heller A., Fiedler W., Wlodarska I., Loncarevic I.F., Beensen V., Claussen U., Liehr T. A new multicolor-FISH approach for the characterization of marker chromosomes: Centromere-specific multicolor-FISH (cenM-FISH). Hum. Genet. 2001;108(3):199–204. PubMed

Liehr T., Heller A., Starke H., Rubtsov N., Trifonov V., Mrasek K., Weise A., Kuechler A., Claussen U. Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int. J. Mol. Med. 2002;9(4):335–339. PubMed

Castronovo C., Valtorta E., Crippa M., Tedoldi S., Romitti L., Amione M.C., Guerneri S., Rusconi D., Ballarati L., Milani D., Grosso E., Cavalli P., Giardino D., Bonati M.T., Larizza L., Finelli P. Design and validation of a pericentromeric BAC clone set aimed at improving diagnosis and phenotype prediction of supernumerary marker chromosomes. Mol. Cytogenet. 2013;6(1):45. https://molecularcytogenetics.biomedcentral.com/ articles/10.1186/1755-8166-6-45 PubMed DOI PMC

Rose S. http://www.molecularcytogenetics.org/ content/6/1/45/comments#1882699

Liehr T. Uniparental disomy (UPD) in clinical genetics. A guide for clinicians and patients. 1st ed. Berlin, Heidelberg: Springer; 2014.

Melo J.B., Backx L., Vermeesch J.R., Santos H.G., Sousa A.C., Kosyakova N., Weise A., von Eggeling F., Liehr T., Carreira I.M. Chromosome 5 derived small supernumerary marker: Towards a genotype/phenotype correlation of proximal chromosome 5 imbalances. J. Appl. Genet. 2011;52(2):193–200. PubMed

Weckselblatt B., Rudd M.K. Human structural variation: Mechanisms of chromosome rearrangements. Trends Genet. 2015;31(10):587–599. PubMed PMC

Liehr T. Small supernumerary marker chromosomes (sSMCs): A spotlight on some nomenclature problems. J. Histochem. Cytochem. 2009;57(11):991–993. PubMed PMC

Hamid A.B., Kreskowski K., Weise A., Kosayakova N., Mrasek K., Voigt M., Guilherme R.S., Wagner R., Hardekopf D., Pekova S., Karamysheva T., Liehr T., Klein E. How to narrow down chromosomal breakpoints in small and large derivative chromosomes - a new probe set. J. Appl. Genet. 2012;53(3):259–269. PubMed

Ballif B.C., Hornor S.A., Sulpizio S.G., Lloyd R.M., Minier S.L., Rorem E.A., Theisen A., Bejjani B.A., Shaffer L.G. Development of a high-density pericentromeric region BAC clone set for the detection and characterization of small supernumerary marker chromosomes by array CGH. Genet. Med. 2007;9(3):150–162. PubMed

Macera M.J., Sobrino A., Levy B., Jobanputra V., Aggarwal V., Mills A., Esteves C., Hanscom C., Pereira S., Pillalamarri V., Ordulu Z., Morton C.C., Talkowski M., Warburton D. Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat. Diagn. 2015;35(3):299–301. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...