How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps

. 2018 May 16 ; 285 (1878) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29743251

The fast motion of the snap-traps of the terrestrial Venus flytrap (Dionaea muscipula) have been intensively studied, in contrast to the tenfold faster underwater snap-traps of its phylogenetic sister, the waterwheel plant (Aldrovanda vesiculosa). Based on biomechanical and functional-morphological analyses and on a reverse biomimetic approach via mechanical modelling and computer simulations, we identify a combination of hydraulic turgor change and the release of prestress stored in the trap as essential for actuation. Our study is the first to identify and analyse in detail the motion principle of Aldrovanda, which not only leads to a deepened understanding of fast plant movements in general, but also contributes to the question of how snap-traps may have evolved and also allows for the development of novel biomimetic compliant mechanisms.

Zobrazit více v PubMed

Poppinga S, Masselter T, Speck T. 2013. Faster than their prey. New insights into the rapid movements of active carnivorous plants traps. Bioessays 35, 649–657. (10.1002/bies.201200175) PubMed DOI

Cameron KM, Wurdack KJ, Jobson RW. 2002. Molecular evidence for the common origin of snap-traps among carnivorous plants. Am. J. Bot. 89, 1503–1509. (10.3732/ajb.89.9.1503) PubMed DOI

Forterre Y, Skotheim JM, Dumais J, Mahadevan L. 2005. How the Venus flytrap snaps. Nature 433, 421–425. (10.1038/nature03185) PubMed DOI

Poppinga S, Kampowski T, Metzger A, Speck O, Speck T. 2016. Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps. Beilstein J. Nanotechnol. 7, 664–674. (10.3762/bjnano.7.59) PubMed DOI PMC

Ashida J. 1934. Studies on the leaf movement of Aldrovanda vesiculosa L. Mem. Coll. Sci. Univ. Kyoto Ser. B 9, 141–244.

Poppinga S, Joyeux M. 2011. Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa. Phys. Rev. E. 84, 41928 (10.1103/PhysRevE.84.041928) PubMed DOI

Iijima T, Sibaoka T.. 1983. Movements of K+ during shutting and opening of the trap-lobes in Aldrovanda vesiculosa. Plant Cell. Physiol. 24, 51–60. (10.1093/oxfordjournals.pcp.a076513) DOI

Gibson TC, Waller DM. 2009. Evolving Darwin's ‘most wonderful’ plant. Ecological steps to a snap-trap. New Phytol. 183, 575–587. (10.1111/j.1469-8137.2009.02935.x) PubMed DOI

Lehtinen S. 2018. Understanding the Venus flytrap through mathematical modelling. J. Theor. Biol. 444, 1–10. (10.1016/j.jtbi.2018.02.003) PubMed DOI

Skotheim JM, Mahadevan L. 2005. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310. (10.1126/science.1107976) PubMed DOI

Adamec L. 1997. How to grow Aldrovanda vesiculosa outdoors. Carniv. Plant Newsl. 26, 85–88.

Adamec L. 1999. The biology and cultivation of red Australian Aldrovanda vesiculosa. Carniv. Plant Newsl. 28, 128–132.

Elansary HOM, Adamec L, Štorchová H. 2010. Uniformity of organellar DNA in Aldrovanda vesiculosa, an endangered aquatic carnivorous species, distributed across four continents. Aquat. Bot. 92, 214–220. (10.1016/j.aquabot.2009.12.002) DOI

Adamec L, Kovářová M. 2006. Field growth characteristics of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis. Folia Geobot. 41, 395–406. (10.1007/BF02806556) DOI

Schindelin J, et al. 2012. Fiji. An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. (10.1038/nmeth.2019) PubMed DOI PMC

R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Neinhuis C, Edelmann HG. 1996. Methanol as a rapid fixative for the investigation of plant surfaces by SEM. J. Microsc. 184, 14–16. (10.1046/j.1365-2818.1996.d01-110.x) DOI

Gibson LJ. 2012. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749–2766. (10.1098/rsif.2012.0341) PubMed DOI PMC

Szymanski DB, Cosgrove DJ. 2009. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr. Biol. 19, R800–R811. (10.1016/j.cub.2009.07.056) PubMed DOI

Colombani M, Forterre Y. 2011. Biomechanics of rapid movements in plants. Poroelastic measurements at the cell scale. Comput. Methods Biomech. Biomed. Eng. 14, 115–117. (10.1080/10255842.2011.593757) DOI

Poppinga S, Zollfrank C, Prucker O, Rühe J, Menges A, Cheng T, Speck T. 2017. Toward a new generation of smart biomimetic actuators for architecture. Adv. Mater. 1703653 (10.1002/adma.201703653) PubMed DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.4079963

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...