Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases

. 2019 Jan ; 33 (1) : 1401-1414. [epub] 20180821

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30130433

Papillon-Lefèvre syndrome (PLS) is characterized by nonfunctional neutrophil serine proteases (NSPs) and fulminant periodontal inflammation of unknown cause. Here we investigated neutrophil extracellular trap (NET)-associated aggregation and cytokine/chemokine-release/degradation by normal and NSP-deficient human and mouse granulocytes. Stimulated with solid or soluble NET inducers, normal neutrophils formed aggregates and both released and degraded cytokines/chemokines. With increasing cell density, proteolytic degradation outweighed release. Maximum output of cytokines/chemokines occurred mostly at densities between 2 × 107 and 4 × 107 neutrophils/cm3. Assessment of neutrophil density in vivo showed that these concentrations are surpassed during inflammation. Association with aggregated NETs conferred protection of neutrophil elastase against α1-antitrypsin. In contrast, eosinophils did not influence cytokine/chemokine concentrations. The proteolytic degradation of inflammatory mediators seen in NETs was abrogated in Papillon-Lefèvre syndrome (PLS) neutrophils. In summary, neutrophil-driven proteolysis of inflammatory mediators works as a built-in safeguard for inflammation. The absence of this negative feedback mechanism might be responsible for the nonresolving periodontitis seen in PLS.-Hahn, J., Schauer, C., Czegley, C., Kling, L., Petru, L., Schmid, B., Weidner, D., Reinwald, C., Biermann, M. H. C., Blunder, S., Ernst, J., Lesner, A., Bäuerle, T., Palmisano, R., Christiansen, S., Herrmann, M., Bozec, A., Gruber, R., Schett, G., Hoffmann, M. H. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases.

Zobrazit více v PubMed

Fuchs T. A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., Weinrauch Y., Brinkmann V., Zychlinsky A. (2007) Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 PubMed PMC

Li P., Li M., Lindberg M. R., Kennett M. J., Xiong N., Wang Y. (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 PubMed PMC

Neeli I., Radic M. (2013) Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol. 4, 38. PubMed PMC

Douda D. N., Khan M. A., Grasemann H., Palaniyar N. (2015) SK3 channel and mitochondrial ROS mediate NADPH oxidase–independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. USA 112, 2817–2822 PubMed PMC

Konig M. F., Andrade F. (2016) A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front. Immunol. 7, 461 PubMed PMC

Kienhöfer D., Hahn J., Stoof J., Csepregi J. Z., Reinwald C., Urbonaviciute V., Johnsson C., Maueröder C., Podolska M. J., Biermann M. H., Leppkes M., Harrer T., Hultqvist M., Olofsson P., Munoz L. E., Mocsai A., Herrmann M., Schett G., Holmdahl R., Hoffmann M. H. (2017) Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. [E-pub ahead of print] JCI Insight doi: 10.1172/jci.insight.92920 PubMed PMC

Schauer C., Janko C., Munoz L. E., Zhao Y., Kienhöfer D., Frey B., Lell M., Manger B., Rech J., Naschberger E., Holmdahl R., Krenn V., Harrer T., Jeremic I., Bilyy R., Schett G., Hoffmann M., Herrmann M. (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 PubMed

Campbell A. M., Kashgarian M., Shlomchik M. J. (2012) NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med. 4, 157ra141 PubMed PMC

Gordon R. A., Herter J. M., Rosetti F., Campbell A. M., Nishi H., Kashgarian M., Bastacky S. I., Marinov A., Nickerson K. M., Mayadas T. N., Shlomchik M. J. (2017) Lupus and proliferative nephritis are PAD4 independent in murine models. [E-pub ahead of print] JCI Insight PubMed PMC

Reinwald C., Schauer C., Csepregi J. Z., Kienhöfer D., Weidner D., Malissen M., Mocsai A., Schett G., Herrmann M., Hoffmann M. (2016) Reply to “Neutrophils are not required for resolution of acute gouty arthritis in mice.” Nat. Med. 22, 1384–1386; erratum: Nat. Med. 2017 PubMed

Parker H., Dragunow M., Hampton M. B., Kettle A. J., Winterbourn C. C. (2012) Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 92, 841–849 PubMed

Toomes C., James J., Wood A. J., Wu C. L., McCormick D., Lench N., Hewitt C., Moynihan L., Roberts E., Woods C. G., Markham A., Wong M., Widmer R., Ghaffar K. A., Pemberton M., Hussein I. R., Temtamy S. A., Davies R., Read A. P., Sloan P., Dixon M. J., Thakker N. S. (1999) Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat. Genet. 23, 421–424 PubMed

Sørensen O. E., Clemmensen S. N., Dahl S. L., Østergaard O., Heegaard N. H., Glenthøj A., Nielsen F. C., Borregaard N. (2014) Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J. Clin. Invest. 124, 4539–4548 PubMed PMC

Yamada T., Tani Y., Nakanishi H., Taguchi R., Arita M., Arai H. (2011) Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice. FASEB J. 25, 561–568 PubMed

Chen Z., Andreev D., Oeser K., Krljanac B., Hueber A., Kleyer A., Voehringer D., Schett G., Bozec A. (2016) Th2 and eosinophil responses suppress inflammatory arthritis. Nat. Commun. 7, 11596 PubMed PMC

Huang C. K., Zhan L., Hannigan M. O., Ai Y., Leto T. L. (2000) P47(phox)-deficient NADPH oxidase defect in neutrophils of diabetic mouse strains, C57BL/6J-m db/db and db/+. J. Leukoc. Biol. 67, 210–215 PubMed

Sareila O., Jaakkola N., Olofsson P., Kelkka T., Holmdahl R. (2013) Identification of a region in p47phox/NCF1 crucial for phagocytic NADPH oxidase (NOX2) activation. J. Leukoc. Biol. 93, 427–435 PubMed PMC

Yu C., Cantor A. B., Yang H., Browne C., Wells R. A., Fujiwara Y., Orkin S. H. (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195, 1387–1395 PubMed PMC

Nation J. L. (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol. 58, 347–351 PubMed

Popow-Stellmaszyk J., Wysocka M., Lesner A., Korkmaz B., Rolka K. (2013) A new proteinase 3 substrate with improved selectivity over human neutrophil elastase. Anal. Biochem. 442, 75–82 PubMed

Roberts H., White P., Dias I., McKaig S., Veeramachaneni R., Thakker N., Grant M., Chapple I. (2016) Characterization of neutrophil function in Papillon-Lefèvre syndrome. J. Leukoc. Biol. 100, 433–444 PubMed

Ueki S., Tokunaga T., Fujieda S., Honda K., Hirokawa M., Spencer L. A., Weller P. F. (2016) Eosinophil ETosis and DNA traps: a new look at eosinophilic inflammation. Curr. Allergy Asthma Rep. 16, 54 PubMed PMC

Toyama S., Okada N., Matsuda A., Morita H., Saito H., Fujisawa T., Nakae S., Karasuyama H., Matsumoto K. (2017) Human eosinophils constitutively express a unique serine protease, PRSS33. Allergol. Int. 66, 463–471 PubMed

Muñoz L. E., Leppkes M., Fuchs T. A., Hoffmann M., Herrmann M. (2017) Missing in action—the meaning of cell death in tissue damage and inflammation. Immunol. Rev. 280, 26–40 PubMed

Alfaro C., Teijeira A., Oñate C., Pérez G., Sanmamed M. F., Andueza M. P., Alignani D., Labiano S., Azpilikueta A., Rodriguez-Paulete A., Garasa S., Fusco J. P., Aznar A., Inogés S., De Pizzol M., Allegretti M., Medina-Echeverz J., Berraondo P., Perez-Gracia J. L., Melero I. (2016) Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin. Cancer Res. 22, 3924–3936 PubMed

Treffers L. W., Hiemstra I. H., Kuijpers T. W., van den Berg T. K., Matlung H. L. (2016) Neutrophils in cancer. Immunol. Rev. 273, 312–328 PubMed

Kruger P., Saffarzadeh M., Weber A. N., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D. (2015) Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 11, e1004651 PubMed PMC

Shpacovitch V., Feld M., Hollenberg M. D., Luger T. A., Steinhoff M. (2008) Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J. Leukoc. Biol. 83, 1309–1322 PubMed

Clancy D. M., Sullivan G. P., Moran H. B. T., Henry C. M., Reeves E. P., McElvaney N. G., Lavelle E. C., Martin S. J. (2018) Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep. 22, 2937–2950 PubMed

Henry C. M., Sullivan G. P., Clancy D. M., Afonina I. S., Kulms D., Martin S. J. (2016) Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 14, 708–722 PubMed

Maueröder C., Kienhöfer D., Hahn J., Schauer C., Manger B., Schett G., Herrmann M., Hoffmann M. H. (2015) How neutrophil extracellular traps orchestrate the local immune response in gout. J. Mol. Med. (Berl.) 93, 727–734 PubMed

Das T., Manefield M. (2012) Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One 7, e46718 PubMed PMC

Rada B., Jendrysik M. A., Pang L., Hayes C. P., Yoo D. G., Park J. J., Moskowitz S. M., Malech H. L., Leto T. L. (2013) Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One 8, e54205 PubMed PMC

Kenny E. F., Herzig A., Krüger R., Muth A., Mondal S., Thompson P. R., Brinkmann V., Bernuth H. V., Zychlinsky A. (2017) Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 6 PubMed PMC

Shah K., Spear J., Nathanson L. A., McCauley J., Edlow J. A. (2007) Does the presence of crystal arthritis rule out septic arthritis? J. Emerg. Med. 32, 23–26 PubMed

Greene C. M., McElvaney N. G. (2009) Proteases and antiproteases in chronic neutrophilic lung disease—relevance to drug discovery. Br. J. Pharmacol. 158, 1048–1058 PubMed PMC

Pieterse E., Rother N., Garsen M., Hofstra J. M., Satchell S. C., Hoffmann M., Loeven M. A., Knaapen H. K., van der Heijden O. W. H., Berden J. H. M., Hilbrands L. B., van der Vlag J. (2017) Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler. Thromb. Vasc. Biol. 37, 1371–1379 PubMed

Sun Z., Yang P. (2004) Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol. 5, 182–190 PubMed

Korkmaz B., Attucci S., Jourdan M. L., Juliano L., Gauthier F. (2005) Inhibition of neutrophil elastase by alpha1-protease inhibitor at the surface of human polymorphonuclear neutrophils. J. Immunol. 175, 3329–3338 PubMed

Owen C. A., Campbell E. J. (1999) The cell biology of leukocyte-mediated proteolysis. J. Leukoc. Biol. 65, 137–150 PubMed

Döring G. (1999) Serine proteinase inhibitor therapy in alpha(1)-antitrypsin inhibitor deficiency and cystic fibrosis. Pediatr. Pulmonol. 28, 363–375 PubMed

Tecchio C., Micheletti A., Cassatella M. A. (2014) Neutrophil-derived cytokines: facts beyond expression. Front. Immunol. 5, 508 PubMed PMC

Pham C. T., Ivanovich J. L., Raptis S. Z., Zehnbauer B., Ley T. J. (2004) Papillon-Lefèvre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J. Immunol. 173, 7277–7281 PubMed

Nauseef W. M. (2014) Proteases, neutrophils, and periodontitis: the NET effect. J. Clin. Invest. 124, 4237–4239 PubMed PMC

Papayannopoulos V., Metzler K. D., Hakkim A., Zychlinsky A. (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 PubMed PMC

Lämmermann T., Afonso P. V., Angermann B. R., Wang J. M., Kastenmüller W., Parent C. A., Germain R. N. (2013) Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 PubMed PMC

Kienle K., Lämmermann T. (2016) Neutrophil swarming: an essential process of the neutrophil tissue response. Immunol. Rev. 273, 76–93 PubMed

Reátegui E., Jalali F., Khankhel A. H., Wong E., Cho H., Lee J., Serhan C. N., Dalli J., Elliott H., Irimia D. (2017) Microscale arrays for the profiling of start and stop signals coordinating human-neutrophil swarming. Nat. Biomed. Eng. 1, 0094 PubMed PMC

Serhan C. N. (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...