Spitz Tumors With ROS1 Fusions: A Clinicopathological Study of 6 Cases, Including FISH for Chromosomal Copy Number Alterations and Mutation Analysis Using Next-Generation Sequencing
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
31361613
DOI
10.1097/dad.0000000000001499
PII: 00000372-202002000-00003
Knihovny.cz E-zdroje
- MeSH
- chromozomální proteiny, nehistonové genetika MeSH
- dítě MeSH
- dospělí MeSH
- epiteloidní a vřetenobuněčný névus genetika patologie MeSH
- faktory štěpení a polyadenylace mRNA genetika MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- melanom genetika patologie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutační analýza DNA MeSH
- nádory kůže genetika patologie MeSH
- onkogenní fúze MeSH
- proteiny buněčného cyklu genetika MeSH
- protoonkogenní proteiny genetika MeSH
- telomerasa genetika MeSH
- tyrosinkinasy genetika MeSH
- variabilita počtu kopií segmentů DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CAPRIN1 protein, human MeSH Prohlížeč
- chromozomální proteiny, nehistonové MeSH
- faktory štěpení a polyadenylace mRNA MeSH
- FIP1L1 protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny MeSH
- PWWP2A protein, human MeSH Prohlížeč
- ROS1 protein, human MeSH Prohlížeč
- telomerasa MeSH
- TERT protein, human MeSH Prohlížeč
- tyrosinkinasy MeSH
Spitz tumors represent a heterogeneous group of melanocytic neoplasms with a spectrum of biological behavior ranging from benign (Spitz nevus) to malignant (spitzoid melanoma). Prediction of the behavior of these lesions based on their histological presentation is not always possible. Recently, mutually exclusive activating kinase fusions, involving ALK, NTRK1, NTRK3, RET, MET, ROS1, and BRAF, have been found in a subset of spitzoid lesions. Some of these genetic alterations were associated with specific morphological features. Here, we report the histological presentation of 6 Spitz tumors with ROS1 fusion. The age of the patients ranged from 6 to 34 years, with strong female prevalence (5:1). All neoplasms were compound melanocytic proliferations with a predominant dermal growth but a conspicuous junctional component displaying atypical microscopic features qualifying them as atypical Spitz tumor. FIP1L1 and CAPRIN1 were identified as 2 novel 5'-fusion partners of ROS1 along with the known PWWP2A-ROS1 fusion. FISH for copy number changes of 9p21, 6p25, and 11q13 was negative in all but 1 neoplasm harboring isolated gain of 8q24. TERT-promoter hotspot mutation analysis was negative in all tumors. All patients are disease-free after a mean follow-up period of 30 months. It is concluded that ROS1-fused spitzoid neoplasms seem to have no distinctive histopathological features although consistent findings were spindled melanocytes arranged in confluent whorling nests, prominent transepidermal elimination of melanocytic nests, and myxoid/mucinous changes.
Bioptical Laboratory Pilsen Czech Republic
Department of Pathology University Hospital Brno Czech Republic
Department of Pathology University Hospital Campus Bio Medico Rome Italy
Zobrazit více v PubMed
Zedek DC, McCalmont TH. Spitz nevi, atypical spitzoid neoplasms, and spitzoid melanoma. Clin Lab Med. 2011;31:311–320.
Busam KJ, Murali R, Pulitzer M, et al. Atypical spitzoid melanocytic tumors with positive sentinel lymph nodes in children and teenagers, and comparison with histologically unambiguous and lethal melanomas. Am J Surg Pathol. 2009;33:1386–1395.
Barnhill RL. The spitzoid lesion: the importance of atypical variants and risk assessment. Am J Dermatopathol. 2006;28:75–83.
Ludgate MW, Fullen DR, Lee J, et al. The atypical Spitz tumor of uncertain biologic potential: a series of 67 patients from a single institution. Cancer. 2009;115:631–641.
Hung T, Piris A, Lobo A, et al. Sentinel lymph node metastasis is not predictive of poor outcome in patients with problematic spitzoid melanocytic tumors. Hum Pathol. 2013;44:87–94.
Ackerman AB. Discordance among expert pathologists in diagnosis of melanocytic neoplasms. Hum Pathol. 1996;27:1115–1116.
Barnhill RL, Argenyi ZB, From L, et al. Atypical spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol. 1999;30:513–520.
Kempf W, Haeffner AC, Mueller B, et al. Experts and gold standards in dermatopathology: qualitative and quantitative analysis of the self-assessment slide seminar at the 17th colloquium of the International Society of Dermatopathology. Am J Dermatopathol. 1998;20:478–482.
Wechsler J, Bastuji-Garin S, Spatz A, et al. Reliability of the histopathologic diagnosis of malignant melanoma in childhood. Arch Dermatol. 2002;138:625–628.
Bastian BC, Wesselmann U, Pinkel D, et al. Molecular cyto-genetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol. 1999;113:1065–1069.
Gerami P, Scolyer RA, Xu X, et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am J Surg Pathol. 2013;37:676–684.
Lee S, Barnhill RL, Dummer R, et al. TERT promoter mutations are predictive of aggressive clinical behavior in patients with spitzoid melanocytic neoplasms. Sci Rep. 2015;5:11200.
Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol Mech Dis. 2014;9:239–271.
Wiesner T, He J, Yelensky R, et al. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas. Nat Commun. 2014;5:3116.
Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–381.
Rabes HM, Demidchik EP, Sidorow JD, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res. 2000;6:1093–1103.
Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A. 1987;84:9270–9274.
Antonescu CR, Sumeijer AJH, Zhang L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 fusions and rare novel RET gene rearrangement. Am J Surg Pathol. 2015;39:957–967.
Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263:1281–1284.
Yeh I, Lang UE, Durieux E, et al. Activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi. Nat Commun. 2017;21;8:644.
Wiesner T, Murali R, Fried I, et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol. 2012;36:818–830.
Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157:967–972.
Busam KJ, Kutzner H, Cerroni L, et al. Clinical and pathologic findings of Spitz nevi and atypical Spitz tumors with ALK fusions. Am J Surg Pathol. 2014;38:925–933.
Yeh I, de la Fouchardiere A, Pissaloux D, et al. Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions. Am J Surg Pathol. 2015;39:581–591.
Amin SM, Haugh AM, Lee CY, et al. A Comparison of morphologic and molecular features of BRAF, ALK, and NTRK1 fusion Spitzoid neoplasms. Am J Surg Pathol. 2016;41:491–498.
VandenBoom T, Quan VL, Zhang B, et al. Genomic fusions in pigmented spindle cell nevus of reed. Am J Surg Pathol. 2018;42:1042–1051.
Wiesner T, Kutzner H. Morphological and genetic aspects of Spitz tumors. Pathologie. 2015;36:37–43.
Gerami P, Jewell SS, Morrison LE, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33:1146–1156.
Gerami P, Li G, Pouryazdanparast P, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012;36:808–817.
Thomas NE, Edmiston SN, Tsai YS, et al. Utility of TERT promoter mutation for cutaneous primary melanoma. Am J Dermatopathol. 2019;41:264–272.
Zhong M, Tian W, Zhuge J, et al. Distinguishing nested variants of urothelial carcinoma from benign mimickers by TERT promoter mutation. Am J Surg Pathol. 2015;39:127–131.
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291.
Landrum MJ, Lee JM, Benson M, et al. Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–D1067.
Spitz S. Melanomas of childhood. Am J Pathol. 1948;24:591–609.
Massi G, LeBoit PE. Spitz nevus. In: Massi G, LeBoit PE, eds. Histological Diagnosis of Nevi and Melanoma. 2nd ed. New York, NY: Springer-Verlag; 2014:155–184.
Barnhill RL. Spitz nevus. In: Barnhill RL, Piepkorn M, Busam KL, eds. Pathology of Melanocytic Nevi and Malignant Melanoma. 3rd ed. New York, NY: Springer-Verlag; 2014:205–269.
Kantor GR, Wheeland RG. Transepidermal elimination of nevus cells: a possible mechanism of nevus involution. Arch Dermatol. 1987;123:1371–1374.
Weedon D, Little JH. Spindle and epithelioid cell nevi in children and adults. A review of 211 cases of the Spitz nevus. Cancer. 1977;40:217–225.
Wiedemeyer K, Guadagno A, Davey J, et al. Acral spitz nevi: clinicopathologic study of 50 cases with immunohistochemical analysis of P16 and P21 expression. Am J Surg Pathol. 2018;42:821–827.
Spatz A, Cook MG, Elder DE, et al. Interobserver reproducibility of ulceration assessment in primary cutaneous melanomas. Eur J Cancer. 2003;39:1861–1865.
Hoang MP. Myxoid spitz nevus. J Cutan Pathol. 2003;30:566–568.
Requena C, Requena L, Kutzner H, et al. Spitz nevus: a clinicopathological study of 349 cases. Am J Dermatopathol. 2009;31:107–116.
Fernandez-Flores A, Riveiro-Falkenbach E, Cassarino DS. Myxoid spitz nevi: report of 6 cases. Am J Dermatopathol. 2018;40:30–35.
Perron E, Pissaloux D, Charon Barra C, et al. Melanocytic myxoid spindle cell tumor with ALK rearrangement (MMySTAR): report of 4 cases of a nevus variant with potential diagnostic challenge. Am J Surg Pathol. 2018;42:595–603.
Vandenberghe P, Wlodarska I, Michaux L, et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia. 2004;18:734–742.
Walz C, Metzgeroth G, Haferlach C, et al. Characterization of three new imatinib-responsive fusion genes in chronic myeloproliferative disorders generated by disruption of the platelet-derived growth factor receptor beta gene. Haematologica. 2007;92:163–169.
Jun HJ, Johnson H, Bronson RT, et al. The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res. 2012;72:3764–3774.
Spatz A, Calonje E, Handfield-Jones S, et al. Spitz tumors in children: a grading system for risk stratification. Arch Dermatol. 1999;135:282–285.
Barnhill RL. The Spitzoid lesion: rethinking Spitz tumors, atypical variants, “Spitzoid melanoma” and risk assessment. Mod Pathol. 2006;19(suppl 2):S21–S33.
Cerroni L, Barnhill R, Elder D, et al. Melanocytic tumors of uncertain malignant potential: results of a tutorial held at the XXIX Symposium of the International Society of Dermatopathology in Graz, October 2008. Am J Surg Pathol. 2010;34:314–326.
Urso C. Diagnostic problems in spitzoid neoplasms. Pathology. 2017;49:325–326.
Cerroni L. Spitzoid tumors: a matter of perspective? Am J Dermatopathol. 2004;26:1–3.
Gerami P, Cooper C, Bajaj S, et al. Outcomes of atypical spitz tumors with chromosomal copy number aberrations and conventional melanomas in children. Am J Surg Pathol. 2013;37:1387–1394.
Yazdan P, Cooper C, Sholl LM, et al. Comparative analysis of atypical Spitz tumors with heterozygous versus homozygous 9p21 deletions for clinical outcomes, histomorphology, BRAF mutation, and p16 expression. Am J Surg Pathol. 2014;38:638–645.
Lee CY, Sholl LM, Zhang B, et al. Atypical spitzoid neoplasms in childhood: a molecular and outcome study. Am J Dermatopathol. 2017;39:181–186.
Shen L, Cooper C, Bajaj S, et al. Atypical spitz tumors with 6q23 deletions: a clinical, histological, and molecular study. Am J Dermatopathol. 2013;35:804–812.
Massi D, Tomasini C, Senetta R, et al. Atypical Spitz tumors in patients younger than 18 years. J Am Acad Dermatol. 2015;72:37–46.
Pouryazdanparast P, Cowen DP, Beilfuss BA, et al. Distinctive clinical and histologic features in cutaneous melanoma with copy number gains in 8q24. Am J Surg Pathol. 2012;36:253–264.
Gerami P, Jewell SS, Pouryazdanparast P, et al. Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn. 2011;13:352–358.
Harms PW, Hocker TL, Zhao L, et al. Loss of p16 expression and copy number changes of CDKN2A in a spectrum of spitzoid melanocytic lesions. Hum Pathol. 2016;58:152–160.
Lazova R, Pornputtapong N, Halaban R, et al. Spitz nevi and Spitzoid melanomas—exome sequencing and comparison to conventional melanocytic nevi and melanomas. Mod Pathol. 2017;30:640–649.
Novel insights into the BAP1-inactivated melanocytic tumor