Antimicrobial Synergistic Effect Between Ag and Zn in Ag-ZnO·mSiO2 Silicate Composite with High Specific Surface Area

. 2019 Sep 05 ; 9 (9) : . [epub] 20190905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31491918

Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001791 European Regional Development Fund
CZ.02.1.01/0.0/0.0/17_049/0008441 Innovative Therapeutic Methods of Musculoskeletal System in Accident Surgery
SP2019/39 Student's project
CZ.02.2.69/0.0/0.0/16_018/0002708 Double degree

Antimicrobial materials are widely used for inhibition of microorganisms in the environment. It has been established that bacterial growth can be restrained by silver nanoparticles. Combining these with other antimicrobial agents, such as ZnO, may increase the antimicrobial activity and the use of carrier substrate makes the material easier to handle. In the paper, we present an antimicrobial nanocomposite based on silver nanoparticles nucleated in general silicate nanostructure ZnO·mSiO2. First, we prepared the silicate fine net nanostructure ZnO·mSiO2 with zinc content up to 30 wt% by precipitation of sodium water glass in zinc acetate solution. Silver nanoparticles were then formed within the material by photoreduction of AgNO3 on photoactive ZnO. This resulted into an Ag-ZnO·mSiO2 composite with silica gel-like morphology and the specific surface area of 250 m2/g. The composite, alongside with pure AgNO3 and clear ZnO·mSiO2, were successfully tested for antimicrobial activity on both gram-positive and gram-negative bacterial strains and yeast Candida albicans. With respect to the silver content, the minimal inhibition concentration of Ag-ZnO·mSiO2 was worse than AgNO3 only for gram-negative strains. Moreover, we found a positive synergistic antimicrobial effect between Ag and Zn agents. These properties create an efficient and easily applicable antimicrobial material in the form of powder.

Zobrazit více v PubMed

Barra Caracciolo A., Topp E., Grenni P. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal. 2015;106:25–36. doi: 10.1016/j.jpba.2014.11.040. PubMed DOI

Cycoń M., Mrozik A., Piotrowska-Seget Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019;10:338. doi: 10.3389/fmicb.2019.00338. PubMed DOI PMC

Li B., Webster T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2017;36:22–32. doi: 10.1186/s13018-017-0520-4. PubMed DOI PMC

Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications and Therapeutic Approaches. Int. J. Mol. Sci. 2016;17:1534. doi: 10.3390/ijms17091534. PubMed DOI PMC

Percival S.L., Bowler P.G., Russell D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005;60:1–7. doi: 10.1016/j.jhin.2004.11.014. PubMed DOI

Zhang C., Hu Z., Deng B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res. 2016;88:403–427. doi: 10.1016/j.watres.2015.10.025. PubMed DOI

Durán N., Durán M., de Jesus M.B., Seabra A.B., Fávaro W.J., Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 2016;12:789–799. doi: 10.1016/j.nano.2015.11.016. PubMed DOI

Hatchett D.W., White H.S. Electrochemistry of Sulfur Adlayers on the Low-Index Faces of Silver. J. Phys. Chem. 1996;100:9854–9859. doi: 10.1021/jp953757z. DOI

Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3. PubMed DOI

Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016;7:7831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC

Berger T.J., Spadaro J.A., Chapin S.E., Becker R.O. Electrically generated silver ions: Quantitative effects on bacterial and mammalian cells. Antimicrob. Agents Chemother. 1976;9:357–358. doi: 10.1128/AAC.9.2.357. PubMed DOI PMC

Nowack B., Krug H.F., Height M. 120 Years of Nanosilver History: Implications for Policy Makers. Environ. Sci. Technol. 2011;45:1177–1183. doi: 10.1021/es103316q. PubMed DOI

Bosetti M., Masse A., Tobin E., Cannas M. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials. 2002;23:887–892. doi: 10.1016/S0142-9612(01)00198-3. PubMed DOI

Knetsch M.L.W., Koole L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers (Basel) 2011;3:340–366. doi: 10.3390/polym3010340. DOI

Kharaghani D., Khan M., Shahzad A., Inoue Y., Yamamoto T., Rozet S., Tamada Y., Kim I. Preparation and In-Vitro Assessment of Hierarchal Organized Antibacterial Breath Mask Based on Polyacrylonitrile/Silver (PAN/AgNPs) Nanofiber. Nanomaterials. 2018;8:461. doi: 10.3390/nano8070461. PubMed DOI PMC

Olmos D., Pontes-Quero G., Corral A., González-Gaitano G., González-Benito J. Preparation and Characterization of Antimicrobial Films Based on LDPE/Ag Nanoparticles with Potential Uses in Food and Health Industries. Nanomaterials. 2018;8:60. doi: 10.3390/nano8020060. PubMed DOI PMC

Wang K., Wu Y., Li H., Li M., Zhang D., Feng H., Fan H. Synthesis, characterization and antimicrobial activity of silver nanoparticles: Agn(NALC)m and Agn(GSHR)m. RSC Adv. 2014;4:5130. doi: 10.1039/c3ra46568c. DOI

Coseri S., Spatareanu A., Sacarescu L., Rimbu C., Suteu D., Spirk S., Harabagiu V. Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan. Carbohydr. Polym. 2015;116:9–17. doi: 10.1016/j.carbpol.2014.06.008. PubMed DOI

Guzman M., Dille J., Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2012;8:37–45. doi: 10.1016/j.nano.2011.05.007. PubMed DOI

Prabhu S., Poulose E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int. Nano Lett. 2012;2:32. doi: 10.1186/2228-5326-2-32. DOI

Huang S., Wang J., Zhang Y., Yu Z., Qi C. Quaternized Carboxymethyl Chitosan-Based Silver Nanoparticles Hybrid: Microwave-Assisted Synthesis, Characterization and Antibacterial Activity. Nanomaterials. 2016;6:118. doi: 10.3390/nano6060118. PubMed DOI PMC

Cataldo F., Ursini O., Angelini G. Synthesis of silver nanoparticles by radiolysis, photolysis and chemical reduction of AgNO3 in Hibiscus sabdariffa infusion (karkadé) J. Radioanal. Nucl. Chem. 2016;307:447–455. doi: 10.1007/s10967-015-4141-2. DOI

Chopade B., Patil S., Ahire M., Kitture R., Jabgunde A., Kale S., Pardesi K., Cameotra S.S., Bellare J., Dhavale D.D., et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012;7:483–496. doi: 10.2147/IJN.S24793. PubMed DOI PMC

Rhim J.W., Wang L.F., Hong S.I. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll. 2013;33:327–335. doi: 10.1016/j.foodhyd.2013.04.002. DOI

Venkatesan J., Kim S.K., Shim M. Antimicrobial, Antioxidant, and Anticancer Activities of Biosynthesized Silver Nanoparticles Using Marine Algae Ecklonia cava. Nanomaterials. 2016;6:235. doi: 10.3390/nano6120235. PubMed DOI PMC

Sharma V.K., Yngard R.A., Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009;145:83–96. doi: 10.1016/j.cis.2008.09.002. PubMed DOI

Raza M., Kanwal Z., Rauf A., Sabri A., Riaz S., Naseem S. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials. 2016;6:74. doi: 10.3390/nano6040074. PubMed DOI PMC

Piella J., Bastús N.G., Puntes V. Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chem. Mater. 2016;28:1066–1075. doi: 10.1021/acs.chemmater.5b04406. DOI

Hassanien A.S., Khatoon U.T. Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Phys. B Condens. Matter. 2019;554:21–30. doi: 10.1016/j.physb.2018.11.004. DOI

Otari S.V., Yadav H.M., Thorat N.D., Patil R.M., Lee J.K., Pawar S.H. Facile one pot synthesis of core shell Ag@SiO2 nanoparticles for catalytic and antimicrobial activity. Mater. Lett. 2016;167:179–182. doi: 10.1016/j.matlet.2015.12.134. DOI

Bakr E.A., El-Attar H.G., Salem M.A. Colloidal Ag Pd core–shell nanoparticles showing fast catalytic eradication of dyes from water and excellent antimicrobial behavior. Res. Chem. Intermed. 2019;45:1509–1526. doi: 10.1007/s11164-018-3679-3. DOI

Tudose M., Culita D.C., Musuc A.M., Marinescu G., Somacescu S., Munteanu C., Bleotu C., Chifiriuc M.C. Multifunctional Silver Nanoparticles-Decorated Silica Functionalized with Retinoic Acid with Anti-Proliferative and Antimicrobial Properties. J. Inorg. Organomet. Polym. Mater. 2016;26:1043–1052. doi: 10.1007/s10904-016-0407-6. DOI

Jędrzejczyk R.J., Turnau K., Jodłowski P.J., Chlebda D.K., Łojewski T., Łojewska J. Antimicrobial Properties of Silver Cations Substituted to Faujasite Mineral. Nanomaterials. 2017;7:240. doi: 10.3390/nano7090240. PubMed DOI PMC

Soto-Quintero A., Romo-Uribe Á., Bermúdez-Morales V., Quijada-Garrido I., Guarrotxena N. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation. Nanomaterials. 2017;7:209. doi: 10.3390/nano7080209. PubMed DOI PMC

Vi T., Rajesh Kumar S., Rout B., Liu C.H., Wong C.B., Chang C.W., Chen C.H., Chen D., Lue S. The Preparation of Graphene Oxide-Silver Nanocomposites: The Effect of Silver Loads on Gram-Positive and Gram-Negative Antibacterial Activities. Nanomaterials. 2018;8:163. doi: 10.3390/nano8030163. PubMed DOI PMC

Das M.R., Sarma R.K., Saikia R., Kale V.S., Shelke M.V., Sengupta P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B Biointerfaces. 2011;83:16–22. doi: 10.1016/j.colsurfb.2010.10.033. PubMed DOI

Zhang M., Zhao Y., Yan L., Peltier R., Hui W., Yao X., Cui Y., Chen X., Sun H., Wang Z. Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity. ACS Appl. Mater. Interfaces. 2016;8:8834–8840. doi: 10.1021/acsami.6b01396. PubMed DOI

Mirahmadi-Zare S.Z., Allafchian A.R., Jalali S.A.H. Core-shell fabrication of an extra-antimicrobial magnetic agent with synergistic effect of substrate ligand to increase the antimicrobial activity of Ag nanoclusters. Environ. Prog. Sustain. Energy. 2019;38:237–245. doi: 10.1002/ep.12927. DOI

Allafchian A.R., Jalali S.A.H., Amiri R., Shahabadi S. Antibacterial activity of new magnetic Ag/TiO2 nanocomposite in silane sol–gel matrix. J. Mater. Sci. Mater. Electron. 2017;28:12312–12319. doi: 10.1007/s10854-017-7049-5. DOI

Ye J., Cheng H., Li H., Yang Y., Zhang S., Rauf A., Zhao Q., Ning G. Highly synergistic antimicrobial activity of spherical and flower-like hierarchical titanium dioxide/silver composites. J. Colloid Interface Sci. 2017;504:448–456. doi: 10.1016/j.jcis.2017.05.111. PubMed DOI

Naik K., Chatterjee A., Prakash H., Kowshik M. Mesoporous TiO2 Nanoparticles Containing Ag Ion with Excellent Antimicrobial Activity at Remarkable Low Silver Concentrations. J. Biomed. Nanotechnol. 2013;9:664–673. doi: 10.1166/jbn.2013.1567. PubMed DOI

Xiao G., Zhang X., Zhang W., Zhang S., Su H., Tan T. Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles chitosan–TiO2 organic–inorganic composites for water disinfection. Appl. Catal. B Environ. 2015;170–171:255–262. doi: 10.1016/j.apcatb.2015.01.042. DOI

D’Agostino A., Taglietti A., Desando R., Bini M., Patrini M., Dacarro G., Cucca L., Pallavicini P., Grisoli P. Bulk Surfaces Coated with Triangular Silver Nanoplates: Antibacterial Action Based on Silver Release and Photo-Thermal Effect. Nanomaterials. 2017;7:7. doi: 10.3390/nano7010007. PubMed DOI PMC

Shende P., Oza B., Gaud R.S. Silver-doped titanium dioxide nanoparticles encapsulated in chitosan–PVA film for synergistic antimicrobial activity. Int. J. Polym. Mater. Polym. Biomater. 2018;67:1080–1086. doi: 10.1080/00914037.2017.1417290. DOI

Jia Q., Shan S., Jiang L., Wang Y., Li D. Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. J. Appl. Polym. Sci. 2012;125:3560–3566. doi: 10.1002/app.36257. DOI

Kang C., Ahn D., Roh C., Kim S.S., Lee J. Development of Synergistic Antimicrobial Coating of p-Aramid Fibers Using Ag Nanoparticles and Glycidyltrimethylammonium Chloride (GTAC) without the Aid of a Cross-Linking Agent. Polymers (Basel) 2017;9:357. doi: 10.3390/polym9080357. PubMed DOI PMC

Hamed S., Emara M., Shawky R.M., El-domany R.A., Youssef T. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine. J. Basic Microbiol. 2017;57:659–668. doi: 10.1002/jobm.201700087. PubMed DOI

Croes S., Stobberingh E.E., Stevens K.N.J., Knetsch M.L.W., Koole L.H. Antimicrobial and Anti-Thrombogenic Features Combined in Hydrophilic Surface Coatings for Skin-Penetrating Catheters. Synergy of Co-embedded Silver Particles and Heparin. ACS Appl. Mater. Interfaces. 2011;3:2543–2550. doi: 10.1021/am200408f. PubMed DOI

Savić N.D., Milivojevic D.R., Glišić B.D., Ilic-Tomic T., Veselinovic J., Pavic A., Vasiljevic B., Nikodinovic-Runic J., Djuran M.I. A comparative antimicrobial and toxicological study of gold(III) and silver(i) complexes with aromatic nitrogen-containing heterocycles: Synergistic activity and improved selectivity index of Au(III)/Ag(i) complexes mixture. RSC Adv. 2016;6:13193–13206. doi: 10.1039/C5RA26002G. DOI

Fakhri A., Tahami S., Naji M. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J. Photochem. Photobiol. B Biol. 2017;169:21–26. doi: 10.1016/j.jphotobiol.2017.02.014. PubMed DOI

Garza-Cervantes J.A., Chávez-Reyes A., Castillo E.C., García-Rivas G., Antonio Ortega-Rivera O., Salinas E., Ortiz-Martínez M., Gómez-Flores S.L., Peña-Martínez J.A., Pepi-Molina A., et al. Synergistic Antimicrobial Effects of Silver/Transition-metal Combinatorial Treatments. Sci. Rep. 2017;7:903. doi: 10.1038/s41598-017-01017-7. PubMed DOI PMC

Krylova G., Eremenko A., Smirnova N., Eustis S. Structure and spectra of photochemically obtained nanosized silver particles in presence of modified porous silica. Int. J. Photoenergy. 2005;7:193–198. doi: 10.1155/S1110662X05000292. DOI

Xu L., Li S., Li F., Zhang H., Wang D., Chen M., Chen F. Ultraviolet light-induced photochemical reaction for controlled fabrication of Ag nano-islands on ZnO nanosheets: An advanced inexpensive substrate for ultrasensitive surface-enhanced Raman scattering analysis. Opt. Mater. Express. 2017;7:3137. doi: 10.1364/OME.7.003137. DOI

Kantipudi S., Sunkara J.R., Rallabhandi M., Thonangi C.V., Cholla R.D., Kollu P., Parvathaneni M.K., Pammi S.V.N. Enhanced wound healing activity of Ag–ZnO composite NPs in Wistar Albino rats. IET Nanobiotechnology. 2018;12:473–478. doi: 10.1049/iet-nbt.2017.0087. PubMed DOI PMC

Bednář J., Mančík P., Svoboda L., Dvorsky R. Enhanced Disintegration of Silicon Particles due to their Mutual Impact Caused by Ultrasonic Cavitation Bubbles. Key Eng. Mater. 2019;810:131–136. doi: 10.4028/www.scientific.net/KEM.810.131. DOI

Richard D. A Method Of The Preparation Of Fibrillar And Lamellar Porous Microstructures And Nanostructures By Means Of Controlled Vacuum Freeze-drying Of Liquid Nanoparticles Dispersions. No: US9410739B2. Patent Application. 2013 Mar 7

Dvorský R., Bednář J., Mančík P., Svoboda L., Trojková J., Matýsek D., Peikertová P. Synthesis of composite photocatalytic nanoparticles ZnO·mSiO2 using new aerosol method. Hut List. 2016;6:68–72.

Clinical and Laboraty Standards Institutes . Methods for Determining Bactericidal Activity of Antimicrobial Agents. National Committee for Clinical Laboratory Standards; Wayne, PA, USA: 1999.

Cockerill F. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard. Clinical and Laboratory Standards Institute; Wayne, Pa, USA: 2012.

Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Qing Y., Cheng L., Li R., Liu G., Zhang Y., Tang X., Wang J., Liu H., Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018;13:3311–3327. doi: 10.2147/IJN.S165125. PubMed DOI PMC

Malachová K., Praus P., Rybková Z., Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 2011;53:642–645. doi: 10.1016/j.clay.2011.05.016. DOI

Silva Santos K., Barbosa A., Pereira da Costa L., Pinheiro M., Oliveira M., Ferreira Padilha F. Silver Nanocomposite Biosynthesis: Antibacterial Activity against Multidrug-Resistant Strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Molecules. 2016;21:1255. doi: 10.3390/molecules21091255. PubMed DOI PMC

Malachová K., Praus P., Pavlíčková Z., Turicová M. Activity of antibacterial compounds immobilised on montmorillonite. Appl. Clay Sci. 2009;43:364–368. doi: 10.1016/j.clay.2008.11.003. DOI

Dvorsky R., Svoboda L., Bednář J., Mančík P., Matýsek D., Pomiklová M. Deposition of Sorption and Photocatalytic Material on Nanofibers and Fabric by Controlled Sublimation. Mater. Sci. Forum. 2018;936:63–67. doi: 10.4028/www.scientific.net/MSF.936.63. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...