Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-04-00179
Czech Health Research Council
530217
Charles University Grant Agency
Q26/LF1
Charles University
PubMed
31736091
DOI
10.1111/boc.201900045
Knihovny.cz E-zdroje
- Klíčová slova
- cell differentiation, membrane protein, posttranslational modifications,
- MeSH
- buněčná diferenciace * MeSH
- buněčné linie MeSH
- membránové mikrodomény MeSH
- myši MeSH
- neurony cytologie metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- priony metabolismus MeSH
- PrPC proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- priony MeSH
- PrPC proteiny MeSH
BACKGROUND INFORMATION: Cellular prion protein (PrPC ) is infamous for its role in prion diseases. The physiological function of PrPC remains enigmatic, but several studies point to its involvement in cell differentiation processes. To test this possibility, we monitored PrPC changes during the differentiation of prion-susceptible CAD 5 cells, and then we analysed the effect of PrPC ablation on the differentiation process. RESULTS: Neuronal CAD 5 cells differentiate within 5 days of serum withdrawal, with the majority of the cells developing long neurites. This process is accompanied by an up to sixfold increase in PrPC expression and enhanced N-terminal β-cleavage of the protein, which suggests a role for the PrPC in the differentiation process. Moreover, the majority of PrPC in differentiated cells is inside the cell, and a large proportion of the protein does not associate with membrane lipid rafts. In contrast, PrPC in proliferating cells is found mostly on the cytoplasmic membrane and is predominantly associated with lipid rafts. To determine the importance of PrPC in cell differentiation, a CAD 5 PrP-/- cell line with ablated PrPC expression was created using the CRISPR/Cas9 system. We observed no considerable difference in morphology, proliferation rate or expression of molecular markers between CAD 5 and CAD 5 PrP-/- cells during the differentiation initiated by serum withdrawal. CONCLUSIONS: PrPC characteristics, such as cell localisation, level of expression and posttranslational modifications, change during CAD 5 cell differentiation, but PrPC ablation does not change the course of the differentiation process. SIGNIFICANCE: Ablation of PrPC expression does not affect CAD 5 cell differentiation, although we observed many intriguing changes in PrPC features during the process. Our study does not support the concept that PrPC is important for neuronal cell differentiation, at least in simple in vitro conditions.
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Plasma Protein Therapeutics Association Annapolis Maryland USA
Zobrazit více v PubMed
Ackerman, S.L., Knowles, B.B. and Andrews, P.W. (1994) Gene regulation during neuronal and non-neuronal differentiation of NTERA2 human teratocarcinoma-derived stem cells. Brain Res. Mol. Brain Res 25, 157-162
Agostini, F., Dotti, C.G., Perez-Canamas, A., Ledesma, M.D., Benetti, F. and Legname, G. (2013) Prion protein accumulation in lipid rafts of mouse aging brain. PLoS One 8, e74244
Alleaume-Butaux, A., Dakowski, C., Pietri, M., Mouillet-Richard, S., Launay, J.M., Kellermann, O. and Schneider, B. (2013) Cellular prion protein is required for neuritogenesis: fine tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics. Cell Health Cytoskeleton 5, 1-12
Bisig, C.G., Chesta, M.E., Zampar, G.G., Purro, S.A., Santander, V.S. and Arce, C.A. (2009) Lack of stabilized microtubules as a result of the absence of major maps in CAD cells does not preclude neurite formation. FEBS J. 276, 7110-7123
Bodrikov, V., Leshchyns'ka, I., Sytnyk, V., Overvoorde, J., Den Hertog, J. and Schachner, M. (2005) RPTPalpha is essential for NCAM-mediated p59fyn activation and neurite elongation. J. Cell Biol. 168, 127-139
Bravard, A., Auvre, F., Fantini, D., Bernardino-Sgherri, J., Sissoeff, L., Daynac, M., Xu, Z., Etienne, O., Dehen, C., Comoy, E., Boussin, F.D., Tell, G., Deslys, J.P. and Radicella, J.P. (2015) The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res. 43, 904-916
Brouckova, A. and Holada, K. (2009) Cellular prion protein in blood platelets associates with both lipid rafts and the cytoskeleton. Thromb. Haemost. 102, 966-974
Brown, D.R., Schmidt, B. and Kretzschmar, H.A. (1997a) Effects of oxidative stress on prion protein expression in PC12 cells. Int. J. Dev. Neurosci. 15, 961-972
Brown, D.R., Schulz-Schaeffer, W.J., Schmidt, B. and Kretzschmar, H.A. (1997b) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104-112
Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H.P., Dearmond, S.J., Prusiner, S.B., Aguet, M. and Weissmann, C. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577-582
Colby, D.W. and Prusiner, S.B. (2011) Prions. Cold Spring Harb. Perspect. Biol. 3, a006833.
Da Luz, M.H., Glezer, I., Xavier, A.M., Da Silva, M.A., Pino, J.M., Zamith, T.P., Vieira, T.F., Antonio, B.B., Antunes, H.K., Martins, V.R. and Lee, K.S. (2016) Expression of tyrosine hydroxylase is negatively regulated via prion protein. Neurochem. Res. 41, 1691-1699
Didonna, A., Venturini, A.C., Hartman, K., Vranac, T., Curin Serbec, V. and Legname, G. (2015) Characterization of four new monoclonal antibodies against the distal N-terminal region of PrP(c). PeerJ 3, e811
Domingues, C.C., Ciana, A., Buttafava, A., Casadei, B.R., Balduini, C., De Paula, E. and Minetti, G. (2010) Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes. J. Membr. Biol. 234, 195-205
Fournier, J.G., Escaig-Haye, F., Billette De Villemeur, T., Robain, O., Lasmezas, C.I., Deslys, J.P., Dormont, D. and Brown, P. (1998) Distribution and submicroscopic immunogold localization of cellular prion protein (PrPc) in extracerebral tissues. Cell Tissue Res. 292, 77-84
Galderisi, U., Jori, F.P. and Giordano, A. (2003) Cell cycle regulation and neural differentiation. Oncogene 22, 5208-5219
Ghaemmaghami, S., Phuan, P.W., Perkins, B., Ullman, J., May, B.C., Cohen, F.E. and Prusiner, S.B. (2007) Cell division modulates prion accumulation in cultured cells. Proc. Natl. Acad. Sci. U. S. A. 104, 17971-17976
Glier, H. and Holada, K. (2012) Blood storage affects the detection of cellular prion protein on peripheral blood leukocytes and circulating dendritic cells in part by promoting platelet satellitism. J. Immunol. Methods 380, 65-72
Guillot-Sestier, M.V., Sunyach, C., Druon, C., Scarzello, S. and Checler, F. (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J. Biol. Chem. 284, 35973-35986
Haigh, C.L. and Brown, D.R. (2006) Prion protein reduces both oxidative and non-oxidative copper toxicity. J. Neurochem. 98, 677-689
Harris, D.A., Huber, M.T., Van Dijken, P., Shyng, S.L., Chait, B.T. and Wang, R. (1993) Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32, 1009-1016
He, S., Park, Y.H., Yorio, T. and Krishnamoorthy, R.R. (2015) Endothelin-mediated changes in gene expression in isolated purified rat retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 56, 6144-6161
Housden, B.E. and Perrimon, N. (2016) Comparing CRISPR and RNAi-based screening technologies. Nat. Biotechnol. 34, 621-623
Chen, S., Mange, A., Dong, L., Lehmann, S. and Schachner, M. (2003) Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol. Cell. Neurosci. 22, 227-233
Chen, X., Jen, A., Warley, A., Lawrence, M.J., Quinn, P.J. and Morris, R.J. (2009) Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition. Biochem. J. 417, 525-533
Ching, J.K., Rajguru, P., Marupudi, N., Banerjee, S. and Fisher, J.S. (2010) A role for AMPK in increased insulin action after serum starvation. Am. J. Physiol. Cell Physiol. 299, C1171-1179
Choi, C.J., Anantharam, V., Saetveit, N.J., Houk, R.S., Kanthasamy, A. and Kanthasamy, A.G. (2007) Normal cellular prion protein protects against manganese-induced oxidative stress and apoptotic cell death. Toxicol. Sci. 98, 495-509
Jackson, G.S., Murray, I., Hosszu, L.L., Gibbs, N., Waltho, J.P., Clarke, A.R. and Collinge, J. (2001) Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. U. S. A. 98, 8531-8535
Keshet, G.I., Bar-Peled, O., Yaffe, D., Nudel, U. and Gabizon, R. (2000) The cellular prion protein colocalizes with the dystroglycan complex in the brain. J. Neurochem. 75, 1889-1897
Kihara, M., Kiyoshima, T., Nagata, K., Wada, H., Fujiwara, H., Hasegawa, K., Someya, H., Takahashi, I. and Sakai, H. (2014) Itm2a expression in the developing mouse first lower molar, and the subcellular localization of Itm2a in mouse dental epithelial cells. PLoS One 9, e103928
Kuffer, A., Lakkaraju, A.K., Mogha, A., Petersen, S.C., Airich, K., Doucerain, C., Marpakwar, R., Bakirci, P., Senatore, A., Monnard, A., Schiavi, C., Nuvolone, M., Grosshans, B., Hornemann, S., Bassilana, F., Monk, K.R. and Aguzzi, A. (2016) The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature 536, 464-468
Kuwahara, C., Takeuchi, A.M., Nishimura, T., Haraguchi, K., Kubosaki, A., Matsumoto, Y., Saeki, K., Matsumoto, Y., Yokoyama, T., Itohara, S. and Onodera, T. (1999) Prions prevent neuronal cell-line death. Nature 400, 225-226
Lee, Y.J. and Baskakov, I.V. (2010) Treatment with normal prion protein delays differentiation and helps to maintain high proliferation activity in human embryonic stem cells. J. Neurochem. 114, 362-373
Lee, Y.J. and Baskakov, I.V. (2013) The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J. Neurochem. 124, 310-322
Lee, Y.J. and Baskakov, I.V. (2014) The cellular form of the prion protein guides the differentiation of human embryonic stem cells into neuron-, oligodendrocyte-, and astrocyte-committed lineages. Prion 8, 266-275
Lewis, V., Johanssen, V.A., Crouch, P.J., Klug, G.M., Hooper, N.M. and Collins, S.J. (2016) Prion protein “gamma-cleavage”: characterizing a novel endoproteolytic processing event. Cell. Mol. Life Sci. 73, 667-683
Li, Y., Hou, L.X., Aktiv, A. and Dahlstrom, A. (2007) Studies of the central nervous system-derived CAD cell line, a suitable model for intraneuronal transport studies? J. Neurosci. Res. 85, 2601-2609
Loubet, D., Dakowski, C., Pietri, M., Pradines, E., Bernard, S., Callebert, J., Ardila-Osorio, H., Mouillet-Richard, S., Launay, J.M., Kellermann, O. and Schneider, B. (2012) Neuritogenesis: the prion protein controls beta1 integrin signaling activity. FASEB J. 26, 678-690
Mahal, S.P., Baker, C.A., Demczyk, C.A., Smith, E.W., Julius, C. and Weissmann, C. (2007) Prion strain discrimination in cell culture: the cell panel assay. Proc. Natl. Acad. Sci. U. S. A. 104, 20908-20913
Mange, A., Beranger, F., Peoc'h, K., Onodera, T., Frobert, Y. and Lehmann, S. (2004) Alpha- and beta- cleavages of the amino-terminus of the cellular prion protein. Biol. Cell. 96, 125-132
Manson, J.C., Clarke, A.R., Hooper, M.L., Aitchison, L., Mcconnell, I. and Hope, J. (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8, 121-127
Martellucci, S., Santacroce, C., Santilli, F., Piccoli, L., Delle Monache, S., Angelucci, A., Misasi, R., Sorice, M. and Mattei, V. (2019) Cellular and molecular mechanisms mediated by recPrP(C) involved in the neuronal differentiation process of mesenchymal stem cells. Int. J. Mol. Sci. 20, E345.
Mcmahon, H.E., Mange, A., Nishida, N., Creminon, C., Casanova, D. and Lehmann, S. (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J. Biol. Chem. 276, 2286-2291
Mehrabian, M., Brethour, D., Macisaac, S., Kim, J.K., Gunawardana, C.G., Wang, H. and Schmitt-Ulms, G. (2014) CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome. PLoS One 9, e114594
Miranda, A., Pericuesta, E., Ramirez, M.A. and Gutierrez-Adan, A. (2011) Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS One 6, e18422
Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J.L., Lehmann, S., Launay, J.M. and Kellermann, O. (2000) Signal transduction through prion protein. Science 289, 1925-1928
Mouillet-Richard, S., Laurendeau, I., Vidaud, M., Kellermann, O. and Laplanche, J.L. (1999) Prion protein and neuronal differentiation: quantitative analysis of prnp gene expression in a murine inducible neuroectodermal progenitor. Microbes Infect. 1, 969-976
Naslavsky, N., Stein, R., Yanai, A., Friedlander, G. and Taraboulos, A. (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J. Biol. Chem. 272, 6324-6331
Nishimura, T., Sakudo, A., Hashiyama, Y., Yachi, A., Saeki, K., Matsumoto, Y., Ogawa, M., Sakaguchi, S., Itohara, S. and Onodera, T. (2007) Serum withdrawal-induced apoptosis in ZrchI prion protein (PrP) gene-deficient neuronal cell line is suppressed by PrP, independent of Doppel. Microbiol. Immunol. 51, 457-466
Nuvolone, M., Hermann, M., Sorce, S., Russo, G., Tiberi, C., Schwarz, P., Minikel, E., Sanoudou, D., Pelczar, P. and Aguzzi, A. (2016) Strictly co-isogenic C57BL/6J-Prnp-/- mice: a rigorous resource for prion science. J. Exp. Med. 213, 313-327
Oz, S., Ivashko-Pachima, Y. and Gozes, I. (2012) The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PLoS One 7, e51458
Pan, T., Li, R., Wong, B.S., Liu, T., Gambetti, P. and Sy, M.S. (2002) Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms. J. Neurochem. 81, 1092-1101
Panigaj, M., Brouckova, A., Glierova, H., Dvorakova, E., Simak, J., Vostal, J.G. and Holada, K. (2011a) Underestimation of the expression of cellular prion protein on human red blood cells. Transfusion 51, 1012-1021
Panigaj, M., Glier, H., Wildova, M. and Holada, K. (2011b) Expression of prion protein in mouse erythroid progenitors and differentiating murine erythroleukemia cells. PLoS One 6, e24599
Pankiewicz, J., Prelli, F., Sy, M.S., Kascsak, R.J., Kascsak, R.B., Spinner, D.S., Carp, R.I., Meeker, H.C., Sadowski, M. and Wisniewski, T. (2006) Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur. J. Neurosci. 23, 2635-2647
Parkin, E.T., Watt, N.T., Turner, A.J. and Hooper, N.M. (2004) Dual mechanisms for shedding of the cellular prion protein. J. Biol. Chem. 279, 11170-11178
Parrie, L.E., Crowell, J.A.E., Telling, G.C. and Bessen, R.A. (2018) The cellular prion protein promotes olfactory sensory neuron survival and axon targeting during adult neurogenesis. Dev. Biol. 438, 23-32
Payrastre, B., Van Bergen En Henegouwen, P.M., Breton, M., Den Hartigh, J.C., Plantavid, M., Verkleij, A.J. and Boonstra, J. (1991) Phosphoinositide kinase, diacylglycerol kinase, and phospholipase C activities associated to the cytoskeleton: effect of epidermal growth factor. J. Cell Biol. 115, 121-128
Peralta, O.A., Huckle, W.R. and Eyestone, W.H. (2011) Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells. Differentiation 81, 68-77
Pirkmajer, S. and Chibalin, A.V. (2011) Serum starvation: caveat emptor. Am. J. Physiol. Cell Physiol. 301, C272-279
Qi, Y., Wang, J.K., Mcmillian, M. and Chikaraishi, D.M. (1997) Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217-1225
Radeva, G. and Sharom, F.J. (2004) Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochem. J. 380, 219-230
Riederer, B.M., Draberova, E., Viklicky, V. and Draber, P. (1995) Changes of MAP2 phosphorylation during brain development. J. Histochem. Cytochem. 43, 1269-1284
Rieger, R., Edenhofer, F., Lasmezas, C.I. and Weiss, S. (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat. Med. 3, 1383-1388
Sakaguchi, S., Katamine, S., Nishida, N., Moriuchi, R., Shigematsu, K., Sugimoto, T., Nakatani, A., Kataoka, Y., Houtani, T., Shirabe, S., Okada, H., Hasegawa, S., Miyamoto, T. and Noda, T. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528-531
Santuccione, A., Sytnyk, V., Leshchyns'ka, I. and Schachner, M. (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol. 169, 341-354
Schmitt-Ulms, G., Legname, G., Baldwin, M.A., Ball, H.L., Bradon, N., Bosque, P.J., Crossin, K.L., Edelman, G.M., Dearmond, S.J., Cohen, F.E. and Prusiner, S.B. (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314, 1209-1225
Skene, J.H., Jacobson, R.D., Snipes, G.J., Mcguire, C.B., Norden, J.J. and Freeman, J.A. (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233, 783-786
Strom, A., Wang, G.S., Picketts, D.J., Reimer, R., Stuke, A.W. and Scott, F.W. (2011) Cellular prion protein localizes to the nucleus of endocrine and neuronal cells and interacts with structural chromatin components. Eur. J. Cell Biol. 90, 414-419
Sunyach, C., Cisse, M.A., Da Costa, C.A., Vincent, B. and Checler, F. (2007) The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J. Biol. Chem. 282, 1956-1963
Suri, C., Fung, B.P., Tischler, A.S. and Chikaraishi, D.M. (1993) Catecholaminergic cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen transgenic mice. J. Neurosci. 13, 1280-1291
Taguchi, Y., Shi, Z.D., Ruddy, B., Dorward, D.W., Greene, L. and Baron, G.S. (2009) Specific biarsenical labeling of cell surface proteins allows fluorescent- and biotin-tagging of amyloid precursor protein and prion proteins. Mol. Biol. Cell 20, 233-244
Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L. and Prusiner, S.B. (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol. 129, 121-132
Tiruppathi, C., Malik, A.B., Del Vecchio, P.J., Keese, C.R. and Giaever, I. (1992) Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc. Natl. Acad. Sci. U. S. A. 89, 7919-7923
Uchiyama, K., Tomita, M., Yano, M., Chida, J., Hara, H., Das, N.R., Nykjaer, A. and Sakaguchi, S. (2017) Prions amplify through degradation of the VPS10P sorting receptor sortilin. PLoS Pathog. 13, e1006470
Uraki, R., Sakudo, A., Ando, S., Kitani, H. and Onodera, T. (2010) Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells. Int. J. Mol. Med. 26, 527-532
Urcan, E., Haertel, U., Styllou, M., Hickel, R., Scherthan, H. and Reichl, F.X. (2010) Real-time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent. Mater. 26, 51-58
Vincent, B., Paitel, E., Saftig, P., Frobert, Y., Hartmann, D., De Strooper, B., Grassi, J., Lopez-Perez, E. and Checler, F. (2001) The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J. Biol. Chem. 276, 37743-37746
Wang, G., Yang, H., Yan, S., Wang, C.E., Liu, X., Zhao, B., Ouyang, Z., Yin, P., Liu, Z., Zhao, Y., Liu, T., Fan, N., Guo, L., Li, S., Li, X.J. and Lai, L. (2015) Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol. Neurodegener. 10, 42
Wang, M., Zhao, D., Yang, Y., Liu, J., Wang, J., Yin, X., Yang, L. and Zhou, X. (2014) The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages. PLoS One 9, e102785
Watanabe, T., Yasutaka, Y., Nishioku, T., Nakashima, A., Futagami, K., Yamauchi, A. and Kataoka, Y. (2012) Atorvastatin stimulates neuroblastoma cells to induce neurite outgrowth by increasing cellular prion protein expression. Neurosci. Lett. 531, 114-119
Watt, N.T., Taylor, D.R., Gillott, A., Thomas, D.A., Perera, W.S. and Hooper, N.M. (2005) Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J. Biol. Chem. 280, 35914-35921
Watts, J.C., Bourkas, M.E.C. and Arshad, H. (2018) The function of the cellular prion protein in health and disease. Acta Neuropathol. 135, 159-178
Williamson, R.A., Peretz, D., Pinilla, C., Ball, H., Bastidas, R.B., Rozenshteyn, R., Houghten, R.A., Prusiner, S.B. and Burton, D.R. (1998) Mapping the prion protein using recombinant antibodies. J. Virol. 72, 9413-9418
Wion, D., Le Bert, M. and Brachet, P. (1988) Messenger RNAs of beta-amyloid precursor protein and prion protein are regulated by nerve growth factor in PC12 cells. Int. J. Dev. Neurosci. 6, 387-393
Ye, X., Feng, T., Tammineni, P., Chang, Q., Jeong, Y.Y., Margolis, D.J., Cai, H., Kusnecov, A. and Cai, Q. (2017) Regulation of synaptic amyloid-beta generation through BACE1 retrograde transport in a mouse model of Alzheimer's disease. J. Neurosci. 37, 2639-2655
Zhang, C.C., Steele, A.D., Lindquist, S. and Lodish, H.F. (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl. Acad. Sci. U. S. A. 103, 2184-2189
Zhang, Q., Zhao, Y.F., Xi, J.Y., Yu, W.B. and Xiao, B.G. (2016) Rho kinase II interference by small hairpin RNA ameliorates 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine induced parkinsonism in mice. Mol. Med. Rep. 14, 4947-4956