Lycopene increases metabolic activity of rat liver CYP2B, CYP2D and CYP3A
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32016858
DOI
10.1007/s43440-019-00007-y
PII: 10.1007/s43440-019-00007-y
Knihovny.cz E-zdroje
- Klíčová slova
- CYP3A, Cytochrome P450, Induction, Lycopene, Rat,
- MeSH
- antioxidancia aplikace a dávkování farmakologie MeSH
- jaterní mikrozomy účinky léků enzymologie MeSH
- krysa rodu Rattus MeSH
- lykopen aplikace a dávkování farmakologie MeSH
- potkani Wistar MeSH
- systém (enzymů) cytochromů P-450 účinky léků metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- lykopen MeSH
- systém (enzymů) cytochromů P-450 MeSH
BACKGROUND: Lycopene as a naturally occurring carotenoid is a common part of the human diet. Several beneficial properties of lycopene have been identified, with the most studied being anti-cancer and antioxidant activity. However, no evidence of possible drug-drug or drug-food supplement interactions has been found. METHODS: We studied the in vivo effect of lycopene on the selected rat liver cytochromes P450 (CYPs): CYP1A2, CYP2B, CYP2C11, CYP2C6, CYP2D, and CYP3A. Lycopene was administered to rats intragastrically at doses of 4, 20, and 100 mg/kg/day for 10 consecutive days. Total protein content, P450 Content, and metabolic activity of selected CYPs were evaluated in the rat liver microsomal fraction. RESULTS: Increased CYP2B, CYP2D, and CYP3A metabolic activities were observed in animals treated with the lycopene dose of 100 mg/kg/day. The content of CYP3A1 protein was increased by the dose of 100 mg/kg/day and CYP3A2 protein was increased by all administered doses of lycopene. CONCLUSION: The results of our study indicate that lycopene increased the metabolic activity of enzymes that are orthologues to the most clinically important human enzymes involved in xenobiotic metabolism. The risk of pharmacokinetic interactions between lycopene dietary supplements and co-administered drugs should be evaluated.
Department of Biochemistry Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Rao AV, Agarwal S. Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr. 2000;19(5):563–9. DOI
Chasse GA, Mak ML, Deretey E, Farkas I, Torday LL, Papp JG, et al. An ab initio computational study on selected lycopene isomers. J Mol Struct Theochem. 2001;571(1):27–37. DOI
O’Neill ME, Southon S, Corridan B, Olmedilla B, Granado F, Blanco I, et al. A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Br J Nutr. 2001;85(4):499–507. DOI
Rao AV, Waseem Z, Agarwal S. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res Int. 1998;31(10):737–41. DOI
Suwanaruang T. Analyzing lycopene content in fruits. Agric Agric Sci Proc. 2016;11:46–8.
Milani C, Maccari M, Mosconi P. Action of lycopene in the experimental gastric ulcer. Pharmacology. 1970;4(6):334–40. DOI
Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274(2):532–8. DOI
Costa-Rodrigues J, Pinho O, Monteiro PRR. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem. 2018;245:1148–53. DOI
Thies F, Masson LF, Rudd A, Vaughan N, Tsang C, Brittenden J, et al. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: a randomized controlled trial. Am J Clin Nutr. 2012;95(5):1013–22. DOI
Karppi J, Kurl S, Ronkainen K, Kauhanen J, Laukkanen JA. Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men. PLoS ONE. 2013;8(5):e64107. DOI
Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retino in relation to risk of prostate cancer. JNCI J Natl Cancer Inst. 1995;87(23):1767–76. DOI
Zu K, Mucci L, Rosner BA, Clinton SK, Loda M, Stampfer MJ, et al. Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. JNCI J Natl Cancer Inst. 2014;106(2):430. DOI
King-Batoon A, Leszczynska JM, Klein CB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen. 2008;49(1):36–45. DOI
Palozza P, Simone RE, Catalano A, Mele MC. Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers. 2011;3(2):2333–57. DOI
Vecchia CL. Tomatoes, lycopene intake, and digestive tract and female hormone-related neoplasms. Exp Biol Med. 2002;227(10):860–3. DOI
Nkondjock A, Ghadirian P, Johnson KC, Krewski D. Dietary intake of lycopene is associated with reduced pancreatic cancer risk. J Nutr. 2005;135(3):592–7. DOI
Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996;384(3):240–2. DOI
Stahl W, Junghans A, de Boer B, Driomina ES, Briviba K, Sies H. Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 1998;427(2):305–8. DOI
Sahin K, Kucuk O. Lycopene in cancer prevention. In: Ramawat KG, Merillon JM, editors. Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Berlin: Springer; 2013. p. 3875–3922. https://doi.org/10.1007/978-3-642-22144-6 . DOI
Izzo AA, Hoon-Kim S, Radhakrishnan R, Williamson EM. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother Res. 2016;30(5):691–700. DOI
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–75. PubMed
Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. II. J Biol Chem. 1964;239:2379–85. PubMed
Wójcikowski J, Gołembiowska K, Daniel WA. Regulation of liver cytochrome P450 by activation of brain dopaminergic system: physiological and pharmacological implications. Biochem Pharmacol. 2008;76(2):258–67. DOI
Dovrtelova G, Zendulka O, Noskova K, Jurica J, Pes O, Dusek J, et al. Effect of endocannabinoid oleamide on rat and human liver cytochrome P450 enzymes in in vitro and in vivo models. Drug Metab Dispos. 2018;46:913–23. DOI
Dovrtelova G, Noskova K, Jurica J, Turjap M, Zendulka O. Can bioactive compounds of Crocus sativus L. Influence the metabolic activity of selected CYP enzymes in the rat? Physiol Res. 2015;64:S453–8. PubMed
Noskova K, Dovrtelova G, Zendulka O, Remínek R, Jurica J. The effect of (−)-linalool on the metabolic activity of liver CYP enzymes in rats. Physiol Res. 2016;65:6.
Tyndale RF, Li Y, Li N-Y, Messina E, Miksys S, Sellers EM. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab Dispos. 1999;27(8):924–30. PubMed
Kobayashi K, Urashima K, Shimada N, Chiba K. Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat. Biochem Pharmacol. 2002;63(5):889–96. DOI
Rowles JL, Ranard KM, Applegate CC, Jeon S, An R, Erdman JW. Processed and raw tomato consumption and risk of prostate cancer: a systematic review and dose–response meta-analysis. Prostate Cancer Prostatic Dis. 2018;21:319–36. DOI
Kavanaugh CJ, Trumbo PR, Ellwood KC. The U.S. Food and Drug Administration’s Evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. JNCI J Natl Cancer Inst. 2007;99(14):1074–85. DOI
Kucuk O, Sarkar FH, Sakr W, Djuric Z, Pollak MN, Khachik F, et al. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Prev Biomark. 2001;10(8):861–8.
Kucuk O, Sarkar FH, Djuric Z, Sakr W, Pollak MN, Khachik F, et al. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med. 2002;227(10):881–5. DOI
Leoncini E, Nedovic D, Panic N, Pastorino R, Edefonti V, Boccia S. Carotenoid intake from natural sources and head and neck cancer: a systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol Prev Biomark. 2015;24(7):1003–11. DOI
Crooker K, Aliani R, Ananth M, Arnold L, Anant S, Thomas SM. A review of promising natural chemopreventive agents for head and neck cancer. Cancer Prev Res. 2018;11(8):441–50. DOI
Gullett NP, Ruhul Amin ARM, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37(3):258–81. DOI
Tang Y, Parmakhtiar B, Simoneau AR, Xie J, Fruehauf J, Lilly M, et al. Lycopene enhances Docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor i receptor levels. Neoplasia. 2011;13(2):108–19. DOI
Kong L, Song C, Ye L, Xu J, Guo D, Shi Q. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model. Int J Food Sci Nutr. 2018;69(7):835–41. DOI
Jewell C, O’Brien NM. Effect of dietary supplementation with carotenoids on xenobiotic metabolizing enzymes in the liver, lung, kidney and small intestine of the rat. Br J Nutr. 1999;81(3):235–42. DOI
Porrini M, Riso P. What are typical lycopene intakes? J Nutr. 2005;135(8):2042S–5S. DOI