Spinal muscular atrophy caused by a novel Alu-mediated deletion of exons 2a-5 in SMN1 undetectable with routine genetic testing
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
32337852
PubMed Central
PMC7336725
DOI
10.1002/mgg3.1238
Knihovny.cz E-zdroje
- Klíčová slova
- SMN1, SMN2, Alu elements, spinal muscular atrophy,
- MeSH
- delece genu * MeSH
- elementy Alu MeSH
- genetické testování metody MeSH
- leukocyty mononukleární metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- předškolní dítě MeSH
- protein přežití motorických neuronů 1 genetika metabolismus MeSH
- sekvenční analýza DNA metody MeSH
- spinální svalová atrofie diagnóza genetika MeSH
- western blotting metody MeSH
- Check Tag
- lidé MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- protein přežití motorických neuronů 1 MeSH
- SMN1 protein, human MeSH Prohlížeč
BACKGROUND: Spinal muscular atrophy (SMA) is an inherited neuromuscular disease affecting 1 in 8,000 newborns. The majority of patients carry bi-allelic variants in the survival of motor neuron 1 gene (SMN1). SMN1 is located in a duplicated region on chromosome 5q13 that contains Alu elements and is predisposed to genomic rearrangements. Due to the genomic complexity of the SMN region and genetic heterogeneity, approximately 50% of SMA patients remain without genetic diagnosis that is a prerequisite for genetic treatments. In this work we describe the diagnostic odyssey of one SMA patient in whom routine diagnostics identified only a maternal heterozygous SMN1Δ(7-8) deletion. METHODS: We characterized SMN transcripts, assessed SMN protein content in peripheral blood mononuclear cells (PBMC), estimated SMN genes dosage, and mapped genomic rearrangement in the SMN region. RESULTS: We identified an Alu-mediated deletion encompassing exons 2a-5 of SMN1 on the paternal allele and a complete deletion of SMN1 on the maternal allele as the cause of SMA in this patient. CONCLUSION: Alu-mediated rearrangements in SMN1 can escape routine diagnostic testing. Parallel analysis of SMN gene dosage, SMN transcripts, and total SMN protein levels in PBMC can identify genomic rearrangements and should be considered in genetically undefined SMA cases.
Department of Clinical Genetics Medirex A S Kosice Slovakia
Department of Medical Biology Faculty of Medicine P J Safarik University Kosice Slovakia
Zobrazit více v PubMed
Boczonadi, V. , Müller, J. S. , Pyle, A. , Munkley, J. , Dor, T. , Quartararo, J. , … Horvath, R. (2014). EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nature Communications, 5, 4287 10.1038/ncomms5287 PubMed DOI PMC
Butchbach, M. E. (2016). Copy number variations in the survival motor neuron genes: Implications for spinal muscular atrophy and other neurodegenerative diseases. Frontiers in Molecular Biosciences, 3, 7 10.3389/fmolb.2016.00007 PubMed DOI PMC
Cingolani, P. , Platts, A. , Wang, L. L. , Coon, M. , Nguyen, T. , Wang, L. , … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly (Austin), 6(2), 80–92. 10.4161/fly.19695 PubMed DOI PMC
Crawford, T. O. , Paushkin, S. V. , Kobayashi, D. T. , Forrest, S. J. , Joyce, C. L. , Finkel, R. S. , … Chen, K. S. (2012). Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS ONE, 7(4), e33572 10.1371/journal.pone.0033572 PubMed DOI PMC
Deininger, P. (2011). Alu elements: Know the SINEs. Genome Biology, 12(12), 236 10.1186/gb-2011-12-12-236 PubMed DOI PMC
Glascock, J. , Sampson, J. , Haidet‐Phillips, A. , Connolly, A. , Darras, B. , Day, J. , … Jarecki, J. (2018). Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. Journal of Neuromuscular Diseases, 5(2), 145–158. 10.3233/JND-180304 PubMed DOI PMC
Groen, E. J. N. , Talbot, K. , & Gillingwater, T. H. (2018). Advances in therapy for spinal muscular atrophy: Promises and challenges. Nature Reviews Neurology, 14(4), 214–224. 10.1038/nrneurol.2018.4 PubMed DOI
Karakaya, M. , Paketci, C. , Altmueller, J. , Thiele, H. , Hoelker, I. , Yis, U. , & Wirth, B. (2019). Biallelic variant in AGTPBP1 causes infantile lower motor neuron degeneration and cerebellar atrophy. American Journal of Medical Genetics. Part A, 10.1002/ajmg.a.61198 PubMed DOI
Karakaya, M. , Storbeck, M. , Strathmann, E. A. , Delle Vedove, A. , Hölker, I. , Altmueller, J. , … Wirth, B. (2018). Targeted sequencing with expanded gene profile enables high diagnostic yield in non‐5q‐spinal muscular atrophies. Human Mutation, 39(9), 1284–1298. 10.1002/humu.23560 PubMed DOI
Kim, S. , Cho, C. S. , Han, K. , & Lee, J. (2016). Structural variation of Alu element and human disease. Genomics Information, 14(3), 70–77. 10.5808/GI.2016.14.3.70 PubMed DOI PMC
Lefebvre, S. , Bürglen, L. , Reboullet, S. , Clermont, O. , Burlet, P. , Viollet, L. , … Melki, J. (1995). Identification and characterization of a spinal muscular atrophy‐determining gene. Cell, 80(1), 155–165. 10.1016/0092-8674(95)90460-3 PubMed DOI
Livak, K. J. , Schmittgen, T. D. (2001). Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods, 25(4), 402–408. 10.1006/meth.2001.1262 PubMed DOI
Majer F., Kousal B., Dusek P., Piherova L., Reboun M., Mihalova R., …, Sikora J. (2020). Alu‐mediated Xq24 deletion encompassing CUL4B, LAMP2, ATP1B4, TMEM255A, and ZBTB33 genes causes Danon disease in a female patient. American Journal of Medical Genetics Part A, 182(1), 219–223. PubMed
McKenna, A. , Hanna, M. , Banks, E. , Sivachenko, A. , Cibulskis, K. , Kernytsky, A. , … DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Research, 20(9), 1297–1303. 10.1101/gr.107524.110 PubMed DOI PMC
Mercuri, E. , Finkel, R. S. , Muntoni, F. , Wirth, B. , Montes, J. , Main, M. , … Szlagatys‐Sidorkiewicz, A. (2018). Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders, 28(2), 103–115. 10.1016/j.nmd.2017.11.005 PubMed DOI
Michelson, D. , Ciafaloni, E. , Ashwal, S. , Lewis, E. , Narayanaswami, P. , Oskoui, M. , & Armstrong, M. J. (2018). Evidence in focus: Nusinersen use in spinal muscular atrophy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology, 91(20), 923–933. 10.1212/WNL.0000000000006502 PubMed DOI
Ottesen, E. W. , Seo, J. , Singh, N. N. , & Singh, R. N. (2017). A multilayered control of the human survival motor neuron gene expression by Alu elements. Frontiers in Microbiology, 8, 2252 10.3389/fmicb.2017.02252 PubMed DOI PMC
Paila, U. , Chapman, B. A. , Kirchner, R. , & Quinlan, A. R. (2013). GEMINI: Integrative exploration of genetic variation and genome annotations. PLoS Computational Biology, 9(7), e1003153 10.1371/journal.pcbi.1003153 PubMed DOI PMC
Renbaum, P. , Kellerman, E. , Jaron, R. , Geiger, D. , Segel, R. , Lee, M. , … Levy‐Lahad, E. (2009). Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. American Journal of Human Genetics, 85(2), 281–289. 10.1016/j.ajhg.2009.07.006 PubMed DOI PMC
Schorling, D. C. , Becker, J. , Pechmann, A. , Langer, T. , Wirth, B. , & Kirschner, J. (2019). Discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology, 10.1212/WNL.0000000000007836 PubMed DOI
Shashi, V. , Magiera, M. M. , Klein, D. , Zaki, M. , Schoch, K. , Rudnik‐Schoneborn, S. , … Senderek, J. (2018). Loss of tubulin deglutamylase CCP1 causes infantile‐onset neurodegeneration. EMBO Journal, 37(23), 10.15252/embj.2018100540 PubMed DOI PMC
Song, X. , Beck, C. R. , Du, R. , Campbell, I. M. , Coban‐Akdemir, Z. , Gu, S. , … Lupski, J. R. (2018). Predicting human genes susceptible to genomic instability associated with Alu/Alu‐mediated rearrangements. Genome Research, 28(8), 1228–1242. 10.1101/gr.229401.117 PubMed DOI PMC
Stenson, P. D. , Mort, M. , Ball, E. V. , Shaw, K. , Phillips, A. , & Cooper, D. N. (2014). The human gene mutation database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics, 133(1), 1–9. 10.1007/s00439-013-1358-4 PubMed DOI PMC
Sumner, C. J. , Kolb, S. J. , Harmison, G. G. , Jeffries, N. O. , Schadt, K. , Finkel, R. S. , … Fischbeck, K. H. (2006). SMN mRNA and protein levels in peripheral blood: Biomarkers for SMA clinical trials. Neurology, 66(7), 1067–1073. 10.1212/01.wnl.0000201929.56928.13 PubMed DOI
Sun, Y. , Grimmler, M. , Schwarzer, V. , Schoenen, F. , Fischer, U. , & Wirth, B. (2005). Molecular and functional analysis of intragenic SMN1 mutations in patients with spinal muscular atrophy. Human Mutation, 25(1), 64–71. 10.1002/humu.20111 PubMed DOI
van der Steege, G. , Grootscholten, P. M. , Cobben, J. M. , Zappata, S. , Scheffer, H. , den Dunnen, J. T. , … Buys, C. H. (1996). Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. American Journal of Human Genetics, 59(4), 834–838. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8808598 PubMed PMC
Verhaart, I. E. C. , Robertson, A. , Wilson, I. J. , Aartsma‐Rus, A. , Cameron, S. , Jones, C. C. , … Lochmüller, H. (2017). Prevalence, incidence and carrier frequency of 5q‐linked spinal muscular atrophy ‐ a literature review. Orphanet Journal of Rare Diseases, 12(1), 124 10.1186/s13023-017-0671-8 PubMed DOI PMC
Wan, J. , Steffen, J. , Yourshaw, M. , Mamsa, H. , Andersen, E. , Rudnik‐Schöneborn, S. , … Jen, J. C. (2016). Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain, 139(11), 2877–2890. 10.1093/brain/aww212 PubMed DOI PMC
Wan, J. , Yourshaw, M. , Mamsa, H. , Rudnik‐Schöneborn, S. , Menezes, M. P. , Hong, J. E. , … Jen, J. C. (2012). Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nature Genetics, 44(6), 704–708. 10.1038/ng.2254 PubMed DOI PMC
Wirth, B. , Herz, M. , Wetter, A. , Moskau, S. , Hahnen, E. , Rudnik‐Schöneborn, S. , … Zerres, K. (1999). Quantitative analysis of survival motor neuron copies: Identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype‐phenotype correlation, and implications for genetic counseling. American Journal of Human Genetics, 64(5), 1340–1356. 10.1086/302369 PubMed DOI PMC