Trial watch : the gut microbiota as a tool to boost the clinical efficacy of anticancer immunotherapy

. 2020 Jun 03 ; 9 (1) : 1774298. [epub] 20200603

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32934879

Grantová podpora
16942 Cancer Research UK - United Kingdom

Accumulating evidence demonstrates the decisive role of the gut microbiota in determining the effectiveness of anticancer therapeutics such as immunogenic chemotherapy or immune checkpoint blockade in preclinical tumor models, as well as in cancer patients. In synthesis, it appears that a normal intestinal microbiota supports therapeutic anticancer responses, while a dysbiotic microbiota that lacks immunostimulatory bacteria or contains overabundant immunosuppressive species causes treatment failure. These findings have led to the design of clinical trials that evaluate the capacity of modulation of the gut microbiota to synergize with treatment and hence limit tumor progression. Along the lines of this Trial Watch, we discuss the rationale for harnessing the gut microbiome in support of cancer therapy and the progress of recent clinical trials testing this new therapeutic paradigm in cancer patients.

Candiolo Cancer Institute FPO IRCCS 100 60 Turin Italy

Center of Clinical Investigations in Biotherapies of Cancer 1428 Villejuif France

Centre de Recherche des Cordeliers Equipe labellisée par la Ligue contre le cancer Université de Paris Sorbonne Université Inserm U1138 Paris France

Centre De Recherche Du Centre Hospitalier De l'Université De Montréal Montréal Canada

Centre Hospitalier De l'Université De Montréal Montréal Canada

CRUK Cambridge Institute University of Cambridge Cambridge UK

Department CIBIO University of Trento Trento Italy

Department of Dermatology Universitätsklinikum Erlangen Friedrich Alexander University 91054 Erlangen Germany

Department of Microbiology Tumor and Cell Biology and Science for Life Laboratory Karolinska Institutet Sweden

Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori via G Amadeo 42 20133 Milan Italy

Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen Netherlands

EverImmune Villejuif France

Faculty of Medicine Université Paris Saclay Le Kremlin Bicêtre France

Gustave Roussy Comprehensive Cancer Institute Villejuif France

HalioDx is a biotech company

IIGM Italian Institute for Genomic Medicine c o IRCCS Candiolo 10060 Candiolo Turin Italy

INSERM U1015 Villejuif France

Karolinska Institute Department of Women's and Children's Health Karolinska University Hospital Sweden

Medicine and Research GBG Forschungs GmbH Neu Isenburg Germany

Metabolomics and Cell Biology Platforms Institut Gustave Roussy Villejuif France

Pôle De Biologie Hôpital Européen Georges Pompidou AP HP Paris France

RECETOX Faculty of Science Masaryk University Brno Czech Republic

Suzhou Institute for Systems Medicine Chinese Academy of Medical Sciences Suzhou China

Zobrazit více v PubMed

Pardoll D. Cancer and the immune system: basic concepts and targets for intervention. Semin Oncol. 2015;42(4):523–8. doi:10.1053/j.seminoncol.2015.05.003. PubMed DOI PMC

Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain J-F, Testori A, Grob -J-J, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine. 2011;364(26):2517–2526. doi:10.1056/NEJMoa1104621. PubMed DOI

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. New England Journal of Medicine. 2015;373(17):1627–1639. doi:10.1056/NEJMoa1507643. PubMed DOI PMC

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, et al. PD-1 blockade with nivolumab in relapsed or refractory hodgkin’s lymphoma. New England Journal of Medicine. 2015;372(4):311–319. doi:10.1056/NEJMoa1411087. PubMed DOI PMC

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine. 2012;366(26):2443–2454. doi:10.1056/NEJMoa1200690. PubMed DOI PMC

Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu W-J, Weber JS, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–1609. doi:10.1001/jama.2016.4059. PubMed DOI

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. New England Journal of Medicine. 2015;373(19):1803–1813. doi:10.1056/NEJMoa1510665. PubMed DOI PMC

Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine. 2010;363(8):711–723. doi:10.1056/NEJMoa1003466. PubMed DOI PMC

Yu JX, Hubbard-Lucey VM, Tang J. Immuno-oncology drug development goes global. Nat Rev Drug Discov. 2019;18(12):899–900. doi:10.1038/d41573-019-00167-9. PubMed DOI

Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–330. doi:10.1038/nature21349. PubMed DOI

Sharma P, Hu-Lieskovan S, Wargo JA, Primary RA. Adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–723. doi:10.1016/j.cell.2017.01.017. PubMed DOI PMC

Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359(6382):1366–1370. doi:10.1126/science.aar6918. PubMed DOI

Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15(6):382–396. doi:10.1038/s41571-018-0006-2. PubMed DOI

Kroemer G, Zitvogel L. Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nature Reviews Immunology. 2018;18(2):87–88. doi:10.1038/nri.2018.4. PubMed DOI

Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nature Reviews Microbiology. 2017;15(8):465–478. doi:10.1038/nrmicro.2017.44. PubMed DOI

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–241. doi:10.1038/nature11551. PubMed DOI PMC

Bäckhed F. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. doi:10.1126/science.1104816. PubMed DOI

Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nature Immunology. 2013;14(7):685–690. doi:10.1038/ni.2608. PubMed DOI PMC

de Vos WM, de Vos EAJ. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutrition Reviews. 2012;70(Suppl 1):S45–56. doi:10.1111/j.1753-4887.2012.00505.x. PubMed DOI

Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–976. doi:10.1126/science.1240537. PubMed DOI PMC

Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CM, Flament C, Lepage P, Roberti MP, et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–943. doi:10.1016/j.immuni.2016.09.009. PubMed DOI

Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–1084. doi:10.1126/science.aad1329. PubMed DOI PMC

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre M-L, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–1089. doi:10.1126/science.aac4255. PubMed DOI PMC

Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–108. doi:10.1126/science.aao3290. PubMed DOI PMC

Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–970. doi:10.1126/science.1240527. PubMed DOI PMC

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. doi:10.1126/science.aan4236. PubMed DOI PMC

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–97. doi:10.1126/science.aan3706. PubMed DOI

Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Annals of Oncology. 2018;29(6):1437–1444. doi:10.1093/annonc/mdy103. PubMed DOI PMC

Pinato DJ, Howlett S, Ottaviani D, Urus H, Patel A, Mineo T, Brock C, Power D, Hatcher O, Falconer A et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncology. 2019. September 12;5(12):1774. doi:10.1001/jamaoncol.2019.2785. PubMed DOI PMC

Elkrief A, El Raichani L, Richard C, Messaoudene M, Belkaid W, Malo J, Belanger K, Miller W, Jamal R, Letarte N, et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 2019;8(4):e1568812. doi:10.1080/2162402X.2019.1568812. PubMed DOI PMC

Zhao S, Gao G, Li W, Li X, Zhao C, Jiang T, Jia Y, He Y, Li A, Su C, et al. Antibiotics are associated with attenuated efficacy of anti-PD-1/PD-L1 therapies in Chinese patients with advanced non-small cell lung cancer. Lung Cancer. 2019;130:10–17. doi:10.1016/j.lungcan.2019.01.017. PubMed DOI

Lalani AKA, Xie W, Braun DA, Kaymakcalan M, Bossé D, Steinharter JA, Martini DJ, Simantov R, Lin X, Wei XX, et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur Urol Oncol. 2019. September 24. doi:10.1016/j.euo.2019.09.001. PubMed DOI PMC

Pflug N, Kluth S, Vehreschild JJ, Bahlo J, Tacke D, Biehl L, Eichhorst B, Fischer K, Cramer P, Fink A-M, et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 2016;5(6):6. doi:10.1080/2162402X.2016.1150399. PubMed DOI PMC

Nenclares P, Bhide SA, Sandoval-Insausti H, Pialat P, Gunn L, Melcher A, Newbold K, Nutting CM, Harrington KJ; Nenclares P, Bhide SA, Sandoval-Insausti H, Pialat P, Gunn L, Melcher A, Newbold K, Nutting CM, Harrington KJ . Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. European Journal of Cancer. 2020;131:9–15. doi:10.1016/j.ejca.2020.02.047. PubMed DOI

Claesson MJ, Clooney AG, O’Toole PW. A clinician’s guide to microbiome analysis. Nature Reviews Gastroenterology & Hepatology. 2017;14(10):585–595. doi:10.1038/nrgastro.2017.97. PubMed DOI

Rong Y, Dong Z, Hong Z, Jin Y, Zhang W, Zhang B, Mao W, Kong H, Wang C, Yang B, et al. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma. Experimental Cell Research. 2017;358(2):352–359. doi:10.1016/j.yexcr.2017.07.009. PubMed DOI

Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–216. PubMed

Zbar B, Tanaka T. Immunotherapy of cancer: regression of tumors after intralesional injection of living Mycobacterium bovis. Science. 1971;172(3980):271–273. doi:10.1126/science.172.3980.271. PubMed DOI

Böhle A, Brandau S. Immune mechanisms in bacillus calmette-Guerin immunotherapy for superficial bladder cancer. Journal of Urology. 2003;170(3):964–969. doi:10.1097/01.ju.0000073852.24341.4a. PubMed DOI

Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living Mycobacterium bovis (strain BCG). Science. 1970;170(3963):1217–1218. doi:10.1126/science.170.3963.1217. PubMed DOI

Pietrocola F, Pol J, Vacchelli E, Rao S, Enot DP, Baracco EE, Levesque S, Castoldi F, Jacquelot N, Yamazaki T, et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016;30(1):147–160. doi:10.1016/j.ccell.2016.05.016. PubMed DOI PMC

van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JFWM, Tijssen JGP, et al. Duodenal infusion of donor feces for recurrent clostridium difficile. New England Journal of Medicine. 2013;368(5):407–415. doi:10.1056/NEJMoa1205037. PubMed DOI

Youngster I, Baruch E, Katz L, Lahat A, Brosh-Nissimov T, Schachter J, Koren O, Markel G, Boursi B. 90. fecal microbiota transplantation in metastatic melanoma patients resistant to anti-PD-1 treatment. Open Forum Infectious Diseases. 2019;6(Suppl Supplement_2):S7. doi:10.1093/ofid/ofz359.014. DOI

Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C, Gjonbalaj M, Littmann ER, Ling L, Miller L, Gyaltshen Y, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10(460):460. doi:10.1126/scitranslmed.aap9489. PubMed DOI PMC

Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB; Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB, et al . Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35(15):1650–1659. doi:10.1200/JCO.2016.70.3348. PubMed DOI PMC

Taur Y, Jenq RR, Perales M-A, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB; Taur Y, Jenq RR, Perales M-A, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB, et al . The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–1182. doi:10.1182/blood-2014-02-554725. PubMed DOI PMC

DeFilipp Z, Peled JU, Li S, Mahabamunuge J, Dagher Z, Slingerland AE, Del Rio C, Valles B, Kempner ME, Smith M, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Advances. 2018;2(7):745–753. doi:10.1182/bloodadvances.2018017731. PubMed DOI PMC

Cramer P, Bresalier RS. Gastrointestinal and hepatic complications of immune checkpoint inhibitors. Curr Gastroenterol Rep. 2017;19(1):3. doi:10.1007/s11894-017-0540-6. PubMed DOI

Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. European Journal of Cancer. 2016;54:139–148. doi:10.1016/j.ejca.2015.11.016. PubMed DOI

Wang Y, Wiesnoski DH, Helmink BA, Gopalakrishnan V, Choi K, DuPont HL, Jiang Z-D, Abu-Sbeih H, Sanchez CA, Chang -C-C, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med. 2018;24(12):1804–1808. doi:10.1038/s41591-018-0238-9. PubMed DOI PMC

Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2(1):1. doi:10.1093/ofid/ofv004. PubMed DOI PMC

Laffin M, Madsen KL. Fecal microbial transplantation in inflammatory bowel disease: a movement too big to be ignored. Clinical Pharmacology & Therapeutics. 2017;102(4):588–590. doi:10.1002/cpt.747. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...