Trial watch : the gut microbiota as a tool to boost the clinical efficacy of anticancer immunotherapy
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
16942
Cancer Research UK - United Kingdom
PubMed
32934879
PubMed Central
PMC7466862
DOI
10.1080/2162402x.2020.1774298
PII: 1774298
Knihovny.cz E-zdroje
- Klíčová slova
- Gut microbiota, anticancer therapeutics, clinical trials,
- MeSH
- dysbióza MeSH
- imunoterapie MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- střevní mikroflóra * MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Accumulating evidence demonstrates the decisive role of the gut microbiota in determining the effectiveness of anticancer therapeutics such as immunogenic chemotherapy or immune checkpoint blockade in preclinical tumor models, as well as in cancer patients. In synthesis, it appears that a normal intestinal microbiota supports therapeutic anticancer responses, while a dysbiotic microbiota that lacks immunostimulatory bacteria or contains overabundant immunosuppressive species causes treatment failure. These findings have led to the design of clinical trials that evaluate the capacity of modulation of the gut microbiota to synergize with treatment and hence limit tumor progression. Along the lines of this Trial Watch, we discuss the rationale for harnessing the gut microbiome in support of cancer therapy and the progress of recent clinical trials testing this new therapeutic paradigm in cancer patients.
Candiolo Cancer Institute FPO IRCCS 100 60 Turin Italy
Center of Clinical Investigations in Biotherapies of Cancer 1428 Villejuif France
Centre De Recherche Du Centre Hospitalier De l'Université De Montréal Montréal Canada
Centre Hospitalier De l'Université De Montréal Montréal Canada
CRUK Cambridge Institute University of Cambridge Cambridge UK
Department CIBIO University of Trento Trento Italy
Faculty of Medicine Université Paris Saclay Le Kremlin Bicêtre France
Gustave Roussy Comprehensive Cancer Institute Villejuif France
IIGM Italian Institute for Genomic Medicine c o IRCCS Candiolo 10060 Candiolo Turin Italy
Medicine and Research GBG Forschungs GmbH Neu Isenburg Germany
Metabolomics and Cell Biology Platforms Institut Gustave Roussy Villejuif France
Pôle De Biologie Hôpital Européen Georges Pompidou AP HP Paris France
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Suzhou Institute for Systems Medicine Chinese Academy of Medical Sciences Suzhou China
Zobrazit více v PubMed
Pardoll D. Cancer and the immune system: basic concepts and targets for intervention. Semin Oncol. 2015;42(4):523–8. doi:10.1053/j.seminoncol.2015.05.003. PubMed DOI PMC
Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain J-F, Testori A, Grob -J-J, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine. 2011;364(26):2517–2526. doi:10.1056/NEJMoa1104621. PubMed DOI
Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. New England Journal of Medicine. 2015;373(17):1627–1639. doi:10.1056/NEJMoa1507643. PubMed DOI PMC
Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, et al. PD-1 blockade with nivolumab in relapsed or refractory hodgkin’s lymphoma. New England Journal of Medicine. 2015;372(4):311–319. doi:10.1056/NEJMoa1411087. PubMed DOI PMC
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine. 2012;366(26):2443–2454. doi:10.1056/NEJMoa1200690. PubMed DOI PMC
Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu W-J, Weber JS, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–1609. doi:10.1001/jama.2016.4059. PubMed DOI
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. New England Journal of Medicine. 2015;373(19):1803–1813. doi:10.1056/NEJMoa1510665. PubMed DOI PMC
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine. 2010;363(8):711–723. doi:10.1056/NEJMoa1003466. PubMed DOI PMC
Yu JX, Hubbard-Lucey VM, Tang J. Immuno-oncology drug development goes global. Nat Rev Drug Discov. 2019;18(12):899–900. doi:10.1038/d41573-019-00167-9. PubMed DOI
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–330. doi:10.1038/nature21349. PubMed DOI
Sharma P, Hu-Lieskovan S, Wargo JA, Primary RA. Adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–723. doi:10.1016/j.cell.2017.01.017. PubMed DOI PMC
Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359(6382):1366–1370. doi:10.1126/science.aar6918. PubMed DOI
Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15(6):382–396. doi:10.1038/s41571-018-0006-2. PubMed DOI
Kroemer G, Zitvogel L. Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nature Reviews Immunology. 2018;18(2):87–88. doi:10.1038/nri.2018.4. PubMed DOI
Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nature Reviews Microbiology. 2017;15(8):465–478. doi:10.1038/nrmicro.2017.44. PubMed DOI
Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–241. doi:10.1038/nature11551. PubMed DOI PMC
Bäckhed F. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. doi:10.1126/science.1104816. PubMed DOI
Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nature Immunology. 2013;14(7):685–690. doi:10.1038/ni.2608. PubMed DOI PMC
de Vos WM, de Vos EAJ. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutrition Reviews. 2012;70(Suppl 1):S45–56. doi:10.1111/j.1753-4887.2012.00505.x. PubMed DOI
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–976. doi:10.1126/science.1240537. PubMed DOI PMC
Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CM, Flament C, Lepage P, Roberti MP, et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–943. doi:10.1016/j.immuni.2016.09.009. PubMed DOI
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–1084. doi:10.1126/science.aad1329. PubMed DOI PMC
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre M-L, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–1089. doi:10.1126/science.aac4255. PubMed DOI PMC
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–108. doi:10.1126/science.aao3290. PubMed DOI PMC
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–970. doi:10.1126/science.1240527. PubMed DOI PMC
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. doi:10.1126/science.aan4236. PubMed DOI PMC
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–97. doi:10.1126/science.aan3706. PubMed DOI
Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Annals of Oncology. 2018;29(6):1437–1444. doi:10.1093/annonc/mdy103. PubMed DOI PMC
Pinato DJ, Howlett S, Ottaviani D, Urus H, Patel A, Mineo T, Brock C, Power D, Hatcher O, Falconer A et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncology. 2019. September 12;5(12):1774. doi:10.1001/jamaoncol.2019.2785. PubMed DOI PMC
Elkrief A, El Raichani L, Richard C, Messaoudene M, Belkaid W, Malo J, Belanger K, Miller W, Jamal R, Letarte N, et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology. 2019;8(4):e1568812. doi:10.1080/2162402X.2019.1568812. PubMed DOI PMC
Zhao S, Gao G, Li W, Li X, Zhao C, Jiang T, Jia Y, He Y, Li A, Su C, et al. Antibiotics are associated with attenuated efficacy of anti-PD-1/PD-L1 therapies in Chinese patients with advanced non-small cell lung cancer. Lung Cancer. 2019;130:10–17. doi:10.1016/j.lungcan.2019.01.017. PubMed DOI
Lalani AKA, Xie W, Braun DA, Kaymakcalan M, Bossé D, Steinharter JA, Martini DJ, Simantov R, Lin X, Wei XX, et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur Urol Oncol. 2019. September 24. doi:10.1016/j.euo.2019.09.001. PubMed DOI PMC
Pflug N, Kluth S, Vehreschild JJ, Bahlo J, Tacke D, Biehl L, Eichhorst B, Fischer K, Cramer P, Fink A-M, et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 2016;5(6):6. doi:10.1080/2162402X.2016.1150399. PubMed DOI PMC
Nenclares P, Bhide SA, Sandoval-Insausti H, Pialat P, Gunn L, Melcher A, Newbold K, Nutting CM, Harrington KJ; Nenclares P, Bhide SA, Sandoval-Insausti H, Pialat P, Gunn L, Melcher A, Newbold K, Nutting CM, Harrington KJ . Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. European Journal of Cancer. 2020;131:9–15. doi:10.1016/j.ejca.2020.02.047. PubMed DOI
Claesson MJ, Clooney AG, O’Toole PW. A clinician’s guide to microbiome analysis. Nature Reviews Gastroenterology & Hepatology. 2017;14(10):585–595. doi:10.1038/nrgastro.2017.97. PubMed DOI
Rong Y, Dong Z, Hong Z, Jin Y, Zhang W, Zhang B, Mao W, Kong H, Wang C, Yang B, et al. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma. Experimental Cell Research. 2017;358(2):352–359. doi:10.1016/j.yexcr.2017.07.009. PubMed DOI
Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–216. PubMed
Zbar B, Tanaka T. Immunotherapy of cancer: regression of tumors after intralesional injection of living Mycobacterium bovis. Science. 1971;172(3980):271–273. doi:10.1126/science.172.3980.271. PubMed DOI
Böhle A, Brandau S. Immune mechanisms in bacillus calmette-Guerin immunotherapy for superficial bladder cancer. Journal of Urology. 2003;170(3):964–969. doi:10.1097/01.ju.0000073852.24341.4a. PubMed DOI
Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living Mycobacterium bovis (strain BCG). Science. 1970;170(3963):1217–1218. doi:10.1126/science.170.3963.1217. PubMed DOI
Pietrocola F, Pol J, Vacchelli E, Rao S, Enot DP, Baracco EE, Levesque S, Castoldi F, Jacquelot N, Yamazaki T, et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016;30(1):147–160. doi:10.1016/j.ccell.2016.05.016. PubMed DOI PMC
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JFWM, Tijssen JGP, et al. Duodenal infusion of donor feces for recurrent clostridium difficile. New England Journal of Medicine. 2013;368(5):407–415. doi:10.1056/NEJMoa1205037. PubMed DOI
Youngster I, Baruch E, Katz L, Lahat A, Brosh-Nissimov T, Schachter J, Koren O, Markel G, Boursi B. 90. fecal microbiota transplantation in metastatic melanoma patients resistant to anti-PD-1 treatment. Open Forum Infectious Diseases. 2019;6(Suppl Supplement_2):S7. doi:10.1093/ofid/ofz359.014. DOI
Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C, Gjonbalaj M, Littmann ER, Ling L, Miller L, Gyaltshen Y, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10(460):460. doi:10.1126/scitranslmed.aap9489. PubMed DOI PMC
Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB; Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB, et al . Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35(15):1650–1659. doi:10.1200/JCO.2016.70.3348. PubMed DOI PMC
Taur Y, Jenq RR, Perales M-A, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB; Taur Y, Jenq RR, Perales M-A, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB, et al . The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–1182. doi:10.1182/blood-2014-02-554725. PubMed DOI PMC
DeFilipp Z, Peled JU, Li S, Mahabamunuge J, Dagher Z, Slingerland AE, Del Rio C, Valles B, Kempner ME, Smith M, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Advances. 2018;2(7):745–753. doi:10.1182/bloodadvances.2018017731. PubMed DOI PMC
Cramer P, Bresalier RS. Gastrointestinal and hepatic complications of immune checkpoint inhibitors. Curr Gastroenterol Rep. 2017;19(1):3. doi:10.1007/s11894-017-0540-6. PubMed DOI
Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. European Journal of Cancer. 2016;54:139–148. doi:10.1016/j.ejca.2015.11.016. PubMed DOI
Wang Y, Wiesnoski DH, Helmink BA, Gopalakrishnan V, Choi K, DuPont HL, Jiang Z-D, Abu-Sbeih H, Sanchez CA, Chang -C-C, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med. 2018;24(12):1804–1808. doi:10.1038/s41591-018-0238-9. PubMed DOI PMC
Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2(1):1. doi:10.1093/ofid/ofv004. PubMed DOI PMC
Laffin M, Madsen KL. Fecal microbial transplantation in inflammatory bowel disease: a movement too big to be ignored. Clinical Pharmacology & Therapeutics. 2017;102(4):588–590. doi:10.1002/cpt.747. PubMed DOI