Configuration of Novel Experimental Fractographic Reverse Engineering Approach Based on Relationship between Spectroscopy of Ruptured Surface and Fracture Behaviour of Rubber Sample
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO (RP/CPS/2020/004)
The Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33036408
PubMed Central
PMC7579395
DOI
10.3390/ma13194445
PII: ma13194445
Knihovny.cz E-zdroje
- Klíčová slova
- deformation speed, fractography, fracture, oil, rubber, spectroscopy, tearing energy, uniaxial tensile,
- Publikační typ
- časopisecké články MeSH
A novel fractographic approach based on a combination of (i) mechanical behavior of cured rubber in uniaxial tensile loading and (ii) spectroscopy of fracture on a ruptured surface was experimentally validated. This approach related the migration of paraffin oil from a matrix to the ruptured rubber surface, to the tearing energy related to the deformation speed responsible for total rubber sample rupture, and the approach itself was configured experimentally. It was evaluated on cured natural rubber (NR) for two different paraffin oil concentrations. Single edge notched tensile (SENT) samples were subjected to uniaxial tensile loadings at two different deformation speeds. First, the tearing energy as a function of deformation speed was determined for each defined oil concentration. Secondly, at specific locations on the ruptured surfaces, infrared (IR) spectroscopy was performed to quantify a characteristic absorbance peak height of migrated paraffin oil during the rupture process. The results of the IR analyses were related to the deformation speed to understand the relation between the amount of migrated paraffin oil during the fracture process and the deformation speed which brought about such a fracture. This novel approach enhanced the reverse engineering process of rubber fracture related to the cause of tearing energies during critical failure.
Zobrazit více v PubMed
Ghosh P., Stoček R., Gehde M., Mukhopadhyay R., Krishnakumar R. Investigation of fatigue crack growth characteristics of NR/BR blend based tyre tread compounds. Int. J. Fract. 2014;188:9–21. doi: 10.1007/s10704-014-9941-9. DOI
Ghosh P., Mukhopadhyay R., Stocek R. Durability prediction of NR/BR and NR/SBR blend tread compounds using tear fatigue analyser. Kgk-Kautschuk Gummi Kunststoffe. 2016;69:53–55.
Andreini G., Straffi P., Cotugno S., Gallone G., Polacco G. Crack growth behavior of styrene-butadiene rubber, natural rubber, and polybutadiene rubber compounds: Comparison of pure-shear versus strip tensile test. Rubber Chem. Technol. 2013;86:132–145. doi: 10.5254/rct.13.88957. DOI
Hamed G.R. Materials and Compounds. In: Gent A.N., editor. Engineering with Rubber: How to Design Rubber Components. Hanser Publishers; Munich, Germany: 2012. p. 29.
Kaliske M., Dal H., Fleischhauer R., Jenkel C., Netzker C. Characterization of fracture processes by continuum and discrete modelling. Comput. Mech. 2011;50:303–320. doi: 10.1007/s00466-011-0578-5. DOI
Rivlin R.S., Thomas A.G. Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 2003;10:291–318. doi: 10.1002/pol.1953.120100303. DOI
Griffith A.A. VI. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character (1896–1934) 1921;221:163–198. doi: 10.1098/rsta.1921.0006. DOI
Stoček R., Horst T., Reincke K. Tearing energy as fracture mechanical quantity for elastomers. In: Stöckelhuber K.W., Das A., Klüppel M., editors. Designing of Elastomer Nanocomposites: From Theory to Applications. Springer; New York, NY, USA: 2017.
Reincke K., Grellmann W., Lach R., Heinrich G. Toughness optimization of SBR elastomers—Use of fracture mechanics methods for characterization. Macromol. Mater. Eng. 2003;288:181–189. doi: 10.1002/mame.200390011. DOI
Torabizadeh M., Putnam Z.A., Sankarasubramanian M., Moosbrugger J.C., Krishnan S. The effects of initial crack length on fracture characterization of rubbers using the J-Integral approach. Polym. Test. 2019;73:327–337. doi: 10.1016/j.polymertesting.2018.11.026. DOI
Agnelli S., Balasooriya W., Bignotti F., Schrittesser B. On the experimental measurement of fracture toughness in SENT rubber specimens. Polym. Test. 2020;87:106508. doi: 10.1016/j.polymertesting.2020.106508. DOI
Stoček R., Heinrich G., Gehde M., Kipscholl R. A new testing concept for determination of dynamic crack propagation in rubber material. KGK-Kautschuk Gummi Kunststoffe. 2012;65:49–53.
Stoček R., Heinrich G., Gehde M., Kipscholl R. Fracture Mechanics. Volume 70. Springer Science and Business Media LLC; Berlin, Germany: 2013. Analysis of Dynamic Crack Propagation in Elastomers by Simultaneous Tensile- and Pure-Shear-Mode Testing; pp. 269–301.
Chow C.L., Wang J., Tse P.N. Rubber Fracture Characterization UsingJ-Integral. Tire Sci. Technol. 1988;16:44–60. doi: 10.2346/1.2148797. DOI
Caimmi F., Calabro R., Vangosa F.B., Marano C., Rink M. J-Integral from Full Field Kinematic Data for Natural Rubber Compounds. Strain. 2015;51:343–356. doi: 10.1111/str.12145. DOI
Shahani A.R., Shooshtar H., Baghaee M. On the determination of the critical J-integral in rubber-like materials by the single specimen test method. Eng. Fract. Mech. 2017;184:101–120. doi: 10.1016/j.engfracmech.2017.08.031. DOI
Rice J.R., Paris P.C., Merkle J.G., Kaufman J.G., Swedlow J.L., Corten H.T., Srawley J.E., Heyer R.H., Wessel E.T., Irwin G.R. Some Further Results of J-Integral Analysis and Estimates. Prog. Flaw Growth Fract. Toughness Test. 1973;536:231–245. doi: 10.1520/stp49643s. DOI
Reincke K., Grellmann W., Heinrich G. Investigation of Mechanical and Fracture Mechanical Properties of Elastomers Filled with Precipitated Silica and Nanofillers Based upon Layered Silicates. Rubber Chem. Technol. 2004;77:662–677. doi: 10.5254/1.3547843. DOI
Bhowmick Anil K., De S.K., editors. Fractography of Rubbery Materials. Elsevier Applied Science; London, UK: 1991.
Ganesan L., Bhattacharyya P., Bhowmick A.K. Quantitative Fractography of Rubber by Image Processing Technique. Rubber Chem. Technol. 1995;68:132–145. doi: 10.5254/1.3538724. DOI
Ducrot E., Chen Y., Bülters M., Sijbesma R.P., Creton C. Toughening Elastomers with Sacrificial Bonds and Watching Them Break. Science. 2014;344:186–189. doi: 10.1126/science.1248494. PubMed DOI
Dasgupta S., Mukhopadhyay R., Baranwal K.C., Bhowmick A.K. Tools and Techniques—Chapter 5. Reverse Engineering of Rubber Products: Concepts. CRC Press; Boca Raton, FL, USA: 2013.
Datta S., Antoš J., Stoček R. Smart numerical method for calculation of simple general infrared parameter identifying binary rubber blends. Polym. Test. 2017;57:192–202. doi: 10.1016/j.polymertesting.2016.11.029. DOI
Datta S., Antoš J., Stoček R. Characterisation of ground tyre rubbery using combination of FT-IR numerical parameter and DTG analysis to determine the composition of ternary rubber blend. Polym. Test. 2017;59:308–315. doi: 10.1016/j.polymertesting.2017.02.019. DOI
Datta S., Harea D., Harea E., Stoček R. An advanced method for calculation of infrared parameter to quantitatively identify rubber grade in a multi-component rubber blend. Polym. Test. 2019;73:308–315. doi: 10.1016/j.polymertesting.2018.11.046. DOI