Prostate deformation during hypofractionated radiotherapy: an analysis of implanted fiducial marker displacement
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FNOs/2021
Ministerstvo Zdravotnictví Ceské Republiky
FNOs/2021
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34876173
PubMed Central
PMC8650520
DOI
10.1186/s13014-021-01958-4
PII: 10.1186/s13014-021-01958-4
Knihovny.cz E-zdroje
- Klíčová slova
- Deformation, Prostate, Rigid body, Stereotactic body radiotherapy,
- MeSH
- celková dávka radioterapie MeSH
- hypofrakcionace při ozařování MeSH
- lidé MeSH
- nádory prostaty diagnostické zobrazování patologie radioterapie MeSH
- plánování radioterapie pomocí počítače metody MeSH
- počítačová rentgenová tomografie metody MeSH
- počítačové zpracování obrazu metody MeSH
- pohyb MeSH
- protézy a implantáty * MeSH
- radioterapie řízená obrazem metody MeSH
- radioterapie s modulovanou intenzitou metody MeSH
- zaměřovací značky pro radioterapii statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: To report prostate deformation during treatment, based on an analysis of fiducial marker positional differences in a large sample. MATERIAL AND METHODS: This study included 144 patients treated with prostate stereotactic body radiation therapy after implantation in each of 4 gold fiducial markers (FMs), which were located and numbered consistently. The center of mass of the FMs was recorded for every pair of X-ray images taken during treatment. The distance between each pair of fiducials in the live X-ray images is calculated and compared with the respective distances as determined in the CT volume. The RBE is the difference between these distances. Mean RBE and intrafraction and interfraction RBE were evaluated. The intrafraction and intefraction RBE variability were defined as the standard deviation, respectively, of all RBE during 1 treatment fraction and of the mean daily RBE over the whole treatment course. RESULTS: We analyzed 720 treatment fractions comprising 24,453 orthogonal X-ray image acquisitions. We observed a trend to higher RBE related to FM4 (apex) during treatment. The fiducial marker in the prostate apex could not be used in 16% of observations, in which RBE was > 2.5 mm. The mean RBEavg was 0.93 ± 0.39 mm (range 0.32-1.79 mm) over the 5 fractions. The RBEavg was significantly lower for the first and second fraction compared with the others (P < .001). The interfraction variability of RBEavg was 0.26 ± 0.16 mm (range 0.04-0.74 mm). The mean intrafraction variability of all FMs was 0.45 ± 0.25 mm. The highest Pearson correlation coefficient was observed between FM2 and FM3 (middle left and right prostate) (R = 0.78; P < .001). Every combination with FM4 yielded lower coefficients (range 0.66-0.71; P < .001), indicating different deformation of the prostate apex. CONCLUSIONS: Ideally, prostate deformation is generally small, but it is very sensitive to rectal and bladder filling. We observed RBE up to 11.3 mm. The overall correlation between FMs was affected by shifts of individual fiducials, indicating that the prostate is not a "rigid" organ. Systematic change of RBE average between subsequent fractions indicates a systematic change in prostate shape.
Zobrazit více v PubMed
Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the MD Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys. 2002;53:1097–1105. doi: 10.1016/S0360-3016(02)02829-8. PubMed DOI
Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA. 2005;294:1233–1239. doi: 10.1001/jama.294.10.1233. PubMed DOI
Mutanga TF, de Boer HC, Rajan V, et al. Day-to-day reproducibility of prostate intrafraction motion assessed by multiple kV and MV imaging of implanted markers during treatment. Int J Radiat Oncol Biol Phys. 2012;83:400–407. doi: 10.1016/j.ijrobp.2011.05.049. PubMed DOI
Deutschmann H, Kametriser G, Steininger P, et al. First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter-and intrafractional rotations of the prostate. Int J Radiat Oncol Biol Phys. 2012;83:1624–1632. doi: 10.1016/j.ijrobp.2011.10.009. PubMed DOI
Sihono DSK, Ehmann M, Heitmann S, et al. Determination of intrafraction prostate motion during external beam radiation therapy with a transperineal 4-dimensional ultrasound real-time tracking system. Int J Radiat Oncol Biol Phys. 2018;101:136–143. doi: 10.1016/j.ijrobp.2018.01.040. PubMed DOI
van de Water S, Valli L, Aluwini S, et al. Intrafraction prostate translations and rotations during hypofractionated robotic radiation surgery: dosimetric impact of correction strategies and margins. Int J Radiat Oncol Biol Phys. 2014;88:1154–1160. doi: 10.1016/j.ijrobp.2013.12.045. PubMed DOI
de Muinck Keizer DM, Kerkmeijer LGW, Willigenburg T, et al. Prostate intrafraction motion during the preparation and delivery of MR-guided radiotherapy sessions on a 1.5 T MR-Linac. Radiother Oncol. 2020;151:88–94. doi: 10.1016/j.radonc.2020.06.044. PubMed DOI
Huang CY, Tehrani JN, Ng JA, et al. Six degrees-of-freedom prostate and lung tumor motion measurements using kilovoltage intrafraction monitoring. Int J Radiat Oncol Biol Phys. 2015;91:368–375. doi: 10.1016/j.ijrobp.2014.09.040. PubMed DOI
van der Wielen GJ, Mutanga TF, Incrocci L, et al. Deformation of prostate and seminal vesicles relative to intraprostatic fiducial markers. Int J Radiat Oncol Biol Phys. 2008;72:1604–1611. doi: 10.1016/j.ijrobp.2008.07.023. PubMed DOI
Nichol AM, Brock KK, Lockwood GA, et al. A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers. Int J Radiat Oncol Biol Phys. 2007;67:48–56. doi: 10.1016/j.ijrobp.2006.08.021. PubMed DOI
Nakazawa T, Tateoka K, Saito Y, et al. Analysis of prostate deformation during a course of radiation therapy for prostate cancer. PLoS ONE. 2015;10:e0131822. doi: 10.1371/journal.pone.0131822. PubMed DOI PMC
Deurloo KE, Steenbakkers RJ, Zijp LJ, et al. Quantification of shape variation of prostate and seminal vesicles during external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61:228–238. doi: 10.1016/j.ijrobp.2004.09.023. PubMed DOI
Kupelian PA, Willoughby TR, Meeks SL, et al. Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys. 2005;62:1291–1296. doi: 10.1016/j.ijrobp.2005.01.005. PubMed DOI
Kerkhof EM, Van Der Put RW, Raaymakers BW, et al. Variation in target and rectum dose due to prostate deformation: an assessment by repeated MR imaging and treatment planning. Phys Med Biol. 2008;53:5623. doi: 10.1088/0031-9155/53/20/004. PubMed DOI
Dieterich S. Dynamic tracking of moving tumors in stereotactic radiosurgery. Robot Radiosurg. 2005;1:51–63.
Collins S, Lei S, Piel N, et al. Six-dimensional correction of intra-fractional prostate motion with CyberKnife stereotactic body radiation therapy. Front Onkol. 2011;1:48. PubMed PMC
Morgia G, De Renzis C. CyberKnife in the treatment of prostate cancer: a revolutionary system. Eur Urol. 2009;56:40–42. doi: 10.1016/j.eururo.2009.02.020. PubMed DOI
King CR, Lehmann J, Adler JR, et al. CyberKnife radiotherapy for localized prostate cancer: rationale and technical feasibility. Technol Cancer Res Treat. 2003;2:25–29. doi: 10.1177/153303460300200104. PubMed DOI
Hatipoglu S, Mu Z, Fu D, et al. Evaluation of a robust fiducial tracking algorithm for image-guided radiosurgery. Med Imaging Vis Image-Guided Proced. 2007;6509:65090A.
Xie Y, Djajaputra D, King CR, et al. Intrafractional motion of the prostate during hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72:236–246. doi: 10.1016/j.ijrobp.2008.04.051. PubMed DOI PMC
Wu X, Fu D, De La Zerda A, et al. Patient alignment and target tracking in radiosurgery of soft-tissue tumors using combined fiducial and skeletal structures tracking techniques. In: Urschel HC, Kresl JJ, Luketich JD, Papiez L, Timmerman RD, Schulz RA, et al., editors. Treating tumors that move with respiration. Berlin, Heidelberg: Springer; 2007. pp. 31–36.
Shirato H, Harada T, Harabayashi T, et al. Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56:240–247. doi: 10.1016/S0360-3016(03)00076-2. PubMed DOI