Safety of Tepotinib in Patients With MET Exon 14 Skipping NSCLC and Recommendations for Management
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
PubMed
35466070
PubMed Central
PMC10068910
DOI
10.1016/j.cllc.2022.03.002
PII: S1525-7304(22)00038-9
Knihovny.cz E-zdroje
- Klíčová slova
- Adverse event, Edema, MET inhibitor, Nausea, Non–small cell lung cancer,
- MeSH
- edém chemicky indukované farmakoterapie MeSH
- exony genetika MeSH
- hypoalbuminemie farmakoterapie MeSH
- inhibitory proteinkinas * škodlivé účinky MeSH
- klinické zkoušky, fáze II jako téma MeSH
- kreatinin terapeutické užití MeSH
- lidé MeSH
- mutace MeSH
- nádory plic * farmakoterapie genetika MeSH
- nauzea chemicky indukované MeSH
- nemalobuněčný karcinom plic * farmakoterapie genetika MeSH
- piperidiny škodlivé účinky MeSH
- pleurální výpotek MeSH
- průjem MeSH
- pyridaziny škodlivé účinky MeSH
- pyrimidiny škodlivé účinky MeSH
- senioři MeSH
- zvracení chemicky indukované MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory proteinkinas * MeSH
- kreatinin MeSH
- piperidiny MeSH
- pyridaziny MeSH
- pyrimidiny MeSH
- tepotinib MeSH Prohlížeč
INTRODUCTION: The MET inhibitor tepotinib demonstrated durable clinical activity in patients with advanced MET exon 14 (METex14) skipping NSCLC. We report detailed analyses of adverse events of clinical interest (AECIs) in VISION, including edema, a class effect of MET inhibitors. PATIENTS AND METHODS: Incidence, management, and time to first onset/resolution were analyzed for all-cause AECIs, according to composite categories (edema, hypoalbuminemia, creatinine increase, and ALT/AST increase) or individual preferred terms (pleural effusion, nausea, diarrhea, and vomiting), for patients with METex14 skipping NSCLC in the phase II VISION trial. RESULTS: Of 255 patients analyzed (median age: 72 years), edema, the most common AECI, was reported in 69.8% (grade 3, 9.4%; grade 4, 0%). Median time to first edema onset was 7.9 weeks (range: 0.1-58.3). Edema was manageable with supportive measures, dose reduction (18.8%), and/or treatment interruption (23.1%), and rarely prompted discontinuation (4.3%). Other AECIs were also manageable and predominantly mild/moderate: hypoalbuminemia, 23.9% (grade 3, 5.5%); pleural effusion, 13.3% (grade ≥ 3, 5.1%); creatinine increase, 25.9% (grade 3, 0.4%); nausea, 26.7% (grade 3, 0.8%), diarrhea, 26.3% (grade 3, 0.4%), vomiting 12.9% (grade 3, 1.2%), and ALT/AST increase, 12.2% (grade ≥ 3, 3.1%). GI AEs typically occurred early and resolved in the first weeks. CONCLUSION: Tepotinib was well tolerated in the largest trial of a MET inhibitor in METex14 skipping NSCLC. The most frequent AEs were largely mild/moderate and manageable with supportive measures and/or dose reduction/interruption, and caused few withdrawals in this elderly population.
CHU Bordeaux Service des Maladies Respiratoires Bordeaux France
Cytel Czech Republic s r o Prague Czech Republic
Department of Clinical Oncology Hospital Sírio Libanês São Paulo Brazil
Department of Oncology Vall d'Hebron Institute of Oncology Barcelona Spain
Department of Thoracic Oncology Saitama Cancer Center Saitama Japan
Global Clinical Development the healthcare business of Merck KGaA Darmstadt Germany
Global Patient Safety the healthcare business of Merck KGaA Darmstadt Germany
Medical Oncology The University of British Columbia Vancouver Canada
Netherlands Cancer Institute Amsterdam The Netherlands
Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Republic of Korea
University Hospitals Birmingham NHS Foundation Trust Birmingham UK
Zobrazit více v PubMed
Awad MM, Oxnard GR, Jackman DM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol. 2016;34:721–730. doi:10.1200/JCO.2015.63.4600. PubMed DOI
Paik P, Drilon A, Fan P- DD, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring met mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–849. doi:10.1158/2159-8290.CD-14-1467. PubMed DOI PMC
Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–859. doi:10.1158/2159-8290.cd-15-0285. PubMed DOI
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–550. doi:10.1038/nature13385. PubMed DOI PMC
Le X, Heymach JV. New verse for a familiar song: small molecule inhibitors for MET exon 14 skipping non-small cell lung cancer. Oncologist. 2020;25:822–825. doi:10.1634/theoncologist.2020-0760. PubMed DOI PMC
Tong JH, Yeung SF, Chan AWH, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22:3048–3056. doi:10.1158/1078-0432.CCR-15-2061. PubMed DOI
Bladt F, Faden B, Friese-Hamim M, et al. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin Cancer Res. 2013;19:2941–2951. doi:10.1158/1078-0432.ccr-12-3247. PubMed DOI
Falchook GS, Kurzrock R, Amin HM, et al. First-in-man Phase I trial of the selective MET inhibitor tepotinib in patients with advanced solid tumors. Clin Cancer Res. 2020;26:1237–1246. doi:10.1158/1078-0432.CCR-19-2860. PubMed DOI
Paik P, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med. 2020;383:931–943. doi:10.1056/NEJMoa2004407. PubMed DOI PMC
Paik PK, Sakai H, Felip E, et al. MA11.05 - Tepotinib In Patients With MET Exon 14 (METex14) Skipping Advanced NSCLC: Updated Efficacy Results From VISION Cohort A. J Thorac Oncol. 2021;16(3):S174. doi:10.1016/j.jtho.2021.01.250. DOI
Le X, Sakai H, Felip E, et al. Tepotinib efficacy and safety in patients with MET exon 14 skipping NSCLC: outcomes in patient subgroups from VISION relevant for clinical practice. Clin Cancer Res. 2022;28:1117–1126. doi:10.1158/1078-0432.CCR-21-2733. PubMed DOI PMC
Garassino MCC, Felip E, Sakai H, et al. 1254P Efficacy and safety of tepotinib in patients (pts) with advanced age: VISION subgroup analysis of pts with MET exon 14 (METex14) skipping NSCLC. Ann Oncol. 2021;32:S984–S985. doi:10.1016/J.ANNONC.2021.08.1857. DOI
Garassino MC, Le X, Kowalski DM, et al. 1347P Health-related quality of life (HRQoL) in patients (pts) with NSCLC harboring MET exon 14 skipping (METex14) treated with tepotinib. Ann Oncol. 2020;31(S4):S864.
US Food and Drug Administration. TEPMETKO (tepotinib) Prescribing Information; 2021. Accessed from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214096s000lbl.pdf Accessed at: February 4, 2022.
Merck Biopharma Co. Ltd.Japan, an affiliate of the healthcare business of Merck KGaA Darmstadt, Germany. TEPMETKO (Tepotinib) Japanese Package Insert. 2020.
National Comprehensive Cancer Network. Non-Small Cell Lung Cancer Version 4.2021; 2021. Accessed from: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf Accessed at: March 18, 2021.
Japanese Lung Cancer Society. Lung cancer practice guidelines. 2020. Accessed from: https://www.haigan.gr.jp. Accessed at: May 13, 2021.
Hanna NH, Robinson AG, Temin S, et al. Therapy for stage IV non–small-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2021;39:1040–1091. doi:10.1200/JCO.20.03570. PubMed DOI
Pruis MA, Geurts-Giele WRR, Von der TJH, et al. Highly accurate DNA-based detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer. 2020;140:46–54. doi:10.1016/j.lungcan.2019.11.010. PubMed DOI
Shitara K, Yamazaki K, Tsushima T, et al. Phase I trial of the MET inhibitor tepotinib in Japanese patients with solid tumors. Jpn J Clin Oncol. 2020;50:859–866. doi:10.1093/jjco/hyaa042. PubMed DOI PMC
Decaens T, Barone C, Assenat E, et al. Phase 1b/2 trial of tepotinib in sorafenib pretreated advanced hepatocellular carcinoma with MET overexpression. Br J Cancer. 2021;125:190–199. doi:10.1038/s41416-021-01334-9. PubMed DOI PMC
Ryoo B-Y, Cheng A-L, Ren Z, et al. Randomised Phase 1b/2 trial of tepotinib vs sorafenib in Asian patients with advanced hepatocellular carcinoma with MET overexpression. Br J Cancer. 2021;125:200–208. doi:10.1038/S41416-021-01380-3. PubMed DOI PMC
Xiong W, Friese-Hamim M, Johne A, et al. Translational pharmacokinetic-pharmacodynamic modeling of preclinical and clinical data of the oral MET inhibitor tepotinib to determine the recommended phase II dose. CPT Pharmacometrics Syst Pharmacol. 2021;10:428–440. doi:10.1002/psp4.12602. PubMed DOI PMC
Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26:47–51. doi:10.1038/s41591-019-0716-8. PubMed DOI PMC
Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383:944–957. doi:10.1056/NEJMoa2002787. PubMed DOI
Hack SP, Bruey JM, Koeppen H. HGF/MET-directed therapeutics in gastroesophageal cancer: a review of clinical and biomarker development. Oncotarget. 2014;5:2866–2880. doi:10.18632/oncotarget.2003. PubMed DOI PMC
Chen T, Filvaroff E, Peng J, et al. MET suppresses epithelial VEGFR2 via intracrine VEGF-induced endoplasmic reticulum-associated degradation. EBioMedicine. 2015;2:406–420. doi:10.1016/J.EBIOM.2015.03.021. PubMed DOI PMC
Spigel DR, Edelman MJ, O’Byrne K, et al. Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non–small-cell lung cancer: METLung. J Clin Oncol. 2017;35:412–420. doi:10.1200/JCO.2016.69.2160. PubMed DOI
Paik P, Xiong W, Hietala SF, et al. 584P Tepotinib exposure-response analyses of safety and efficacy in patients with solid tumours. Ann Oncol. 2020;31:S494–S495. doi:10.1016/j.annonc.2020.08.698. DOI
Al-Naher A, Wright D, Devonald MAJ, Pirmohamed M. Renal function monitoring in heart failure – what is the optimal frequency? A narrative review. Br J Clin Pharmacol. 2018;84:5–17. doi:10.1111/bcp.13434. PubMed DOI PMC
Goodwin K, Ledezma B, Heist R, Garon E. MO01.04 Management of selected adverse events with capmatinib: Institutional experiences from the GEOMETRY Mono-1 trial. J Thorac Oncol. 2021;16(1):S16–S17. doi:10.1016/j.jtho.2020.10.052. DOI
US Food and Drug Administration. Center for Drug Evaluation and Research (application number: 214096Orig1s000): Multi-discipline review; 2020. Accessed from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214096Orig1s000MultidisciplineR.pdf Accessed at: March 17, 2021.
US Food and Drug Administration. TABRECTA (capmatinib) Prescribing Information; 2020. Accessed from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf Accessed at: February 4, 2022.
Omote S, Matsuoka N, Arakawa H, Nakanishi T, Tamai I . Effect of tyrosine kinase inhibitors on renal handling of creatinine by MATE1. Sci Rep. 2018;8:9237. doi:10.1038/s41598-018-27672-y. PubMed DOI PMC
Mohan A, Herrmann S. Capmatinib-induced pseudo-acute kidney injury: a case report. Am J Kidney Dis. 2022;79:120–124. doi:10.1053/J.AJKD.2021.04.009. PubMed DOI
Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AAK, Vernekar SN. Markers of renal function tests. N Am J Med Sci. 2010;2:170–173 Accessed from: http://www.ncbi.nlm.nih.gov/pubmed/22624135. Accessed April 16, 2021. PubMed PMC
Medenica M, Medenica M, Cosovic D. Pleural Effusions in Lung Cancer: Detection and Treatment. In: Lung Cancer - Strategies for Diagnosis and Treatment. InTech; 2018. doi: 10.5772/intechopen.78307. DOI
Ding PN, Lord SJ, Gebski V, et al. Risk of treatment-related toxicities from EGFR tyrosine kinase inhibitors: a meta-analysis of clinical trials of gefitinib, erlotinib, and afatinib in advanced EGFR-mutated non–small cell lung cancer. J Thorac Oncol. 2017;12:633–643. doi:10.1016/j.jtho.2016.11.2236. PubMed DOI
Costa RB, Costa RLB, Talamantes SM, et al. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer. Oncotarget. 2018;9:22137–22146. doi:10.18632/oncotarget.25154. PubMed DOI PMC
Sehgal K, Patell R, Rangachari D, Costa DB. Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors. Transl Cancer Res. 2018;7(Suppl 7):S779–S786. doi:10.21037/tcr.2018.08.11. PubMed DOI PMC
Lu S, Fang J, Li X, et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study. Lancet Respir Med. 2021;9:1154–1164. doi:10.1016/S2213-2600(21)00084-9. PubMed DOI
Cho BC, Kim DW, Bearz A, et al. ASCEND-8: A randomized phase 1 study of ceritinib, 450 mg or 600 mg, taken with a low-fat meal versus 750 mg in fasted state in patients with anaplastic lymphoma kinase (ALK)-rearranged metastatic non–small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12:1357–1367. doi:10.1016/j.jtho.2017.07.005. PubMed DOI
Naccache JM, Gibiot Q, Monnet I, et al. Lung cancer and interstitial lung disease: a literature review. J Thorac Dis. 2018;10:3829–3844. doi:10.21037/jtd.2018.05.75. PubMed DOI PMC
Shah RR. Tyrosine kinase inhibitor-induced interstitial lung disease: clinical features, diagnostic challenges, and therapeutic dilemmas. Drug Saf. 2016;39:1073–1091. doi:10.1007/s40264-016-0450-9. PubMed DOI
Skeoch S, Weatherley N, Swift A, et al. Drug-induced interstitial lung disease: a systematic review. J Clin Med. 2018;7:356. doi:10.3390/jcm7100356. PubMed DOI PMC
Scagliotti GV, De Marinis F, Rinaldi M, et al. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J Clin Oncol. 2002;20:4285–4291. doi:10.1200/JCO.2002.02.068. PubMed DOI
Rossi A, Di Maio M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther. 2016;16:653–660. doi:10.1586/14737140.2016.1170596. PubMed DOI
Champiat S, Lambotte O, Barreau E, et al. Management of immune check-point blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27:559–574. doi:10.1093/annonc/mdv623. PubMed DOI
Remon J, Mezquita L, Corral J, Vilariño N, Reguart N. Immune-related adverse events with immune checkpoint inhibitors in thoracic malignancies: Focusing on non-small cell lung cancer patients. J Thorac Dis. 2018;10(Suppl 13):S1516–S1533. doi:10.21037/jtd.2017.12.52. PubMed DOI PMC
Sun X, Roudi R, Dai T, et al. Immune-related adverse events associated with programmed cell death protein-1 and programmed cell death ligand 1 inhibitors for non-small cell lung cancer: a PRISMA systematic review and meta-analysis. BMC Cancer. 2019;19. doi:10.1186/s12885-019-5701-6. PubMed DOI PMC
Cortot A, Le X, Smit E, et al. Safety of MET tyrosine kinase inhibitors in patients with MET exon 14 skipping non-small cell lung cancer: A clinical review [published online ahead of print, 2022 Feb 4]. Clin Lung Cancer. 2022;1525–7304(22) 00013–4. doi:10.1016/J.CLLC.2022.01.003. PubMed DOI