Safety of Tepotinib in Patients With MET Exon 14 Skipping NSCLC and Recommendations for Management

. 2022 Jun ; 23 (4) : 320-332. [epub] 20220317

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35466070

Grantová podpora
P30 CA008748 NCI NIH HHS - United States

Odkazy

PubMed 35466070
PubMed Central PMC10068910
DOI 10.1016/j.cllc.2022.03.002
PII: S1525-7304(22)00038-9
Knihovny.cz E-zdroje

INTRODUCTION: The MET inhibitor tepotinib demonstrated durable clinical activity in patients with advanced MET exon 14 (METex14) skipping NSCLC. We report detailed analyses of adverse events of clinical interest (AECIs) in VISION, including edema, a class effect of MET inhibitors. PATIENTS AND METHODS: Incidence, management, and time to first onset/resolution were analyzed for all-cause AECIs, according to composite categories (edema, hypoalbuminemia, creatinine increase, and ALT/AST increase) or individual preferred terms (pleural effusion, nausea, diarrhea, and vomiting), for patients with METex14 skipping NSCLC in the phase II VISION trial. RESULTS: Of 255 patients analyzed (median age: 72 years), edema, the most common AECI, was reported in 69.8% (grade 3, 9.4%; grade 4, 0%). Median time to first edema onset was 7.9 weeks (range: 0.1-58.3). Edema was manageable with supportive measures, dose reduction (18.8%), and/or treatment interruption (23.1%), and rarely prompted discontinuation (4.3%). Other AECIs were also manageable and predominantly mild/moderate: hypoalbuminemia, 23.9% (grade 3, 5.5%); pleural effusion, 13.3% (grade ≥ 3, 5.1%); creatinine increase, 25.9% (grade 3, 0.4%); nausea, 26.7% (grade 3, 0.8%), diarrhea, 26.3% (grade 3, 0.4%), vomiting 12.9% (grade 3, 1.2%), and ALT/AST increase, 12.2% (grade ≥ 3, 3.1%). GI AEs typically occurred early and resolved in the first weeks. CONCLUSION: Tepotinib was well tolerated in the largest trial of a MET inhibitor in METex14 skipping NSCLC. The most frequent AEs were largely mild/moderate and manageable with supportive measures and/or dose reduction/interruption, and caused few withdrawals in this elderly population.

CHU Bordeaux Service des Maladies Respiratoires Bordeaux France

Cytel Czech Republic s r o Prague Czech Republic

Department of Clinical Oncology Hospital Sírio Libanês São Paulo Brazil

Department of Medical Oncology and Hematology Comprehensive Cancer Center Zurich University Hospital Zurich Zurich Switzerland

Department of Oncology Vall d'Hebron Institute of Oncology Barcelona Spain

Department of Thoracic Head and Neck Medical Oncology The University of Texas MD Anderson Cancer Center Houston TX

Department of Thoracic Oncology Saitama Cancer Center Saitama Japan

Global Clinical Development the healthcare business of Merck KGaA Darmstadt Germany

Global Patient Safety the healthcare business of Merck KGaA Darmstadt Germany

Guangdong Lung Cancer Institute Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences Guangzhou China

Medical Oncology The University of British Columbia Vancouver Canada

Netherlands Cancer Institute Amsterdam The Netherlands

Pius Hospital University Medicine Oldenburg Department of Hematology and Oncology University Department Internal Medicine Oncology Oldenburg Germany

Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Republic of Korea

Thoracic Oncology Service Memorial Sloan Kettering Cancer Center New York NY; Department of Medicine Weill Cornell Medical College New York NY

Univ Lille CHU Lille CNRS Inserm Institut Pasteur de Lille UMR9020 UMR S 1277 Canther F 59000 Lille France

University Hospitals Birmingham NHS Foundation Trust Birmingham UK

Zobrazit více v PubMed

Awad MM, Oxnard GR, Jackman DM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol. 2016;34:721–730. doi:10.1200/JCO.2015.63.4600. PubMed DOI

Paik P, Drilon A, Fan P- DD, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring met mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–849. doi:10.1158/2159-8290.CD-14-1467. PubMed DOI PMC

Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–859. doi:10.1158/2159-8290.cd-15-0285. PubMed DOI

Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–550. doi:10.1038/nature13385. PubMed DOI PMC

Le X, Heymach JV. New verse for a familiar song: small molecule inhibitors for MET exon 14 skipping non-small cell lung cancer. Oncologist. 2020;25:822–825. doi:10.1634/theoncologist.2020-0760. PubMed DOI PMC

Tong JH, Yeung SF, Chan AWH, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22:3048–3056. doi:10.1158/1078-0432.CCR-15-2061. PubMed DOI

Bladt F, Faden B, Friese-Hamim M, et al. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin Cancer Res. 2013;19:2941–2951. doi:10.1158/1078-0432.ccr-12-3247. PubMed DOI

Falchook GS, Kurzrock R, Amin HM, et al. First-in-man Phase I trial of the selective MET inhibitor tepotinib in patients with advanced solid tumors. Clin Cancer Res. 2020;26:1237–1246. doi:10.1158/1078-0432.CCR-19-2860. PubMed DOI

Paik P, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med. 2020;383:931–943. doi:10.1056/NEJMoa2004407. PubMed DOI PMC

Paik PK, Sakai H, Felip E, et al. MA11.05 - Tepotinib In Patients With MET Exon 14 (METex14) Skipping Advanced NSCLC: Updated Efficacy Results From VISION Cohort A. J Thorac Oncol. 2021;16(3):S174. doi:10.1016/j.jtho.2021.01.250. DOI

Le X, Sakai H, Felip E, et al. Tepotinib efficacy and safety in patients with MET exon 14 skipping NSCLC: outcomes in patient subgroups from VISION relevant for clinical practice. Clin Cancer Res. 2022;28:1117–1126. doi:10.1158/1078-0432.CCR-21-2733. PubMed DOI PMC

Garassino MCC, Felip E, Sakai H, et al. 1254P Efficacy and safety of tepotinib in patients (pts) with advanced age: VISION subgroup analysis of pts with MET exon 14 (METex14) skipping NSCLC. Ann Oncol. 2021;32:S984–S985. doi:10.1016/J.ANNONC.2021.08.1857. DOI

Garassino MC, Le X, Kowalski DM, et al. 1347P Health-related quality of life (HRQoL) in patients (pts) with NSCLC harboring MET exon 14 skipping (METex14) treated with tepotinib. Ann Oncol. 2020;31(S4):S864.

US Food and Drug Administration. TEPMETKO (tepotinib) Prescribing Information; 2021. Accessed from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214096s000lbl.pdf Accessed at: February 4, 2022.

Merck Biopharma Co. Ltd.Japan, an affiliate of the healthcare business of Merck KGaA Darmstadt, Germany. TEPMETKO (Tepotinib) Japanese Package Insert. 2020.

National Comprehensive Cancer Network. Non-Small Cell Lung Cancer Version 4.2021; 2021. Accessed from: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf Accessed at: March 18, 2021.

Japanese Lung Cancer Society. Lung cancer practice guidelines. 2020. Accessed from: https://www.haigan.gr.jp. Accessed at: May 13, 2021.

Hanna NH, Robinson AG, Temin S, et al. Therapy for stage IV non–small-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2021;39:1040–1091. doi:10.1200/JCO.20.03570. PubMed DOI

Pruis MA, Geurts-Giele WRR, Von der TJH, et al. Highly accurate DNA-based detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer. 2020;140:46–54. doi:10.1016/j.lungcan.2019.11.010. PubMed DOI

Shitara K, Yamazaki K, Tsushima T, et al. Phase I trial of the MET inhibitor tepotinib in Japanese patients with solid tumors. Jpn J Clin Oncol. 2020;50:859–866. doi:10.1093/jjco/hyaa042. PubMed DOI PMC

Decaens T, Barone C, Assenat E, et al. Phase 1b/2 trial of tepotinib in sorafenib pretreated advanced hepatocellular carcinoma with MET overexpression. Br J Cancer. 2021;125:190–199. doi:10.1038/s41416-021-01334-9. PubMed DOI PMC

Ryoo B-Y, Cheng A-L, Ren Z, et al. Randomised Phase 1b/2 trial of tepotinib vs sorafenib in Asian patients with advanced hepatocellular carcinoma with MET overexpression. Br J Cancer. 2021;125:200–208. doi:10.1038/S41416-021-01380-3. PubMed DOI PMC

Xiong W, Friese-Hamim M, Johne A, et al. Translational pharmacokinetic-pharmacodynamic modeling of preclinical and clinical data of the oral MET inhibitor tepotinib to determine the recommended phase II dose. CPT Pharmacometrics Syst Pharmacol. 2021;10:428–440. doi:10.1002/psp4.12602. PubMed DOI PMC

Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26:47–51. doi:10.1038/s41591-019-0716-8. PubMed DOI PMC

Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383:944–957. doi:10.1056/NEJMoa2002787. PubMed DOI

Hack SP, Bruey JM, Koeppen H. HGF/MET-directed therapeutics in gastroesophageal cancer: a review of clinical and biomarker development. Oncotarget. 2014;5:2866–2880. doi:10.18632/oncotarget.2003. PubMed DOI PMC

Chen T, Filvaroff E, Peng J, et al. MET suppresses epithelial VEGFR2 via intracrine VEGF-induced endoplasmic reticulum-associated degradation. EBioMedicine. 2015;2:406–420. doi:10.1016/J.EBIOM.2015.03.021. PubMed DOI PMC

Spigel DR, Edelman MJ, O’Byrne K, et al. Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non–small-cell lung cancer: METLung. J Clin Oncol. 2017;35:412–420. doi:10.1200/JCO.2016.69.2160. PubMed DOI

Paik P, Xiong W, Hietala SF, et al. 584P Tepotinib exposure-response analyses of safety and efficacy in patients with solid tumours. Ann Oncol. 2020;31:S494–S495. doi:10.1016/j.annonc.2020.08.698. DOI

Al-Naher A, Wright D, Devonald MAJ, Pirmohamed M. Renal function monitoring in heart failure – what is the optimal frequency? A narrative review. Br J Clin Pharmacol. 2018;84:5–17. doi:10.1111/bcp.13434. PubMed DOI PMC

Goodwin K, Ledezma B, Heist R, Garon E. MO01.04 Management of selected adverse events with capmatinib: Institutional experiences from the GEOMETRY Mono-1 trial. J Thorac Oncol. 2021;16(1):S16–S17. doi:10.1016/j.jtho.2020.10.052. DOI

US Food and Drug Administration. Center for Drug Evaluation and Research (application number: 214096Orig1s000): Multi-discipline review; 2020. Accessed from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214096Orig1s000MultidisciplineR.pdf Accessed at: March 17, 2021.

US Food and Drug Administration. TABRECTA (capmatinib) Prescribing Information; 2020. Accessed from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf Accessed at: February 4, 2022.

Omote S, Matsuoka N, Arakawa H, Nakanishi T, Tamai I . Effect of tyrosine kinase inhibitors on renal handling of creatinine by MATE1. Sci Rep. 2018;8:9237. doi:10.1038/s41598-018-27672-y. PubMed DOI PMC

Mohan A, Herrmann S. Capmatinib-induced pseudo-acute kidney injury: a case report. Am J Kidney Dis. 2022;79:120–124. doi:10.1053/J.AJKD.2021.04.009. PubMed DOI

Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AAK, Vernekar SN. Markers of renal function tests. N Am J Med Sci. 2010;2:170–173 Accessed from: http://www.ncbi.nlm.nih.gov/pubmed/22624135. Accessed April 16, 2021. PubMed PMC

Medenica M, Medenica M, Cosovic D. Pleural Effusions in Lung Cancer: Detection and Treatment. In: Lung Cancer - Strategies for Diagnosis and Treatment. InTech; 2018. doi: 10.5772/intechopen.78307. DOI

Ding PN, Lord SJ, Gebski V, et al. Risk of treatment-related toxicities from EGFR tyrosine kinase inhibitors: a meta-analysis of clinical trials of gefitinib, erlotinib, and afatinib in advanced EGFR-mutated non–small cell lung cancer. J Thorac Oncol. 2017;12:633–643. doi:10.1016/j.jtho.2016.11.2236. PubMed DOI

Costa RB, Costa RLB, Talamantes SM, et al. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer. Oncotarget. 2018;9:22137–22146. doi:10.18632/oncotarget.25154. PubMed DOI PMC

Sehgal K, Patell R, Rangachari D, Costa DB. Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors. Transl Cancer Res. 2018;7(Suppl 7):S779–S786. doi:10.21037/tcr.2018.08.11. PubMed DOI PMC

Lu S, Fang J, Li X, et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study. Lancet Respir Med. 2021;9:1154–1164. doi:10.1016/S2213-2600(21)00084-9. PubMed DOI

Cho BC, Kim DW, Bearz A, et al. ASCEND-8: A randomized phase 1 study of ceritinib, 450 mg or 600 mg, taken with a low-fat meal versus 750 mg in fasted state in patients with anaplastic lymphoma kinase (ALK)-rearranged metastatic non–small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12:1357–1367. doi:10.1016/j.jtho.2017.07.005. PubMed DOI

Naccache JM, Gibiot Q, Monnet I, et al. Lung cancer and interstitial lung disease: a literature review. J Thorac Dis. 2018;10:3829–3844. doi:10.21037/jtd.2018.05.75. PubMed DOI PMC

Shah RR. Tyrosine kinase inhibitor-induced interstitial lung disease: clinical features, diagnostic challenges, and therapeutic dilemmas. Drug Saf. 2016;39:1073–1091. doi:10.1007/s40264-016-0450-9. PubMed DOI

Skeoch S, Weatherley N, Swift A, et al. Drug-induced interstitial lung disease: a systematic review. J Clin Med. 2018;7:356. doi:10.3390/jcm7100356. PubMed DOI PMC

Scagliotti GV, De Marinis F, Rinaldi M, et al. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J Clin Oncol. 2002;20:4285–4291. doi:10.1200/JCO.2002.02.068. PubMed DOI

Rossi A, Di Maio M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther. 2016;16:653–660. doi:10.1586/14737140.2016.1170596. PubMed DOI

Champiat S, Lambotte O, Barreau E, et al. Management of immune check-point blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27:559–574. doi:10.1093/annonc/mdv623. PubMed DOI

Remon J, Mezquita L, Corral J, Vilariño N, Reguart N. Immune-related adverse events with immune checkpoint inhibitors in thoracic malignancies: Focusing on non-small cell lung cancer patients. J Thorac Dis. 2018;10(Suppl 13):S1516–S1533. doi:10.21037/jtd.2017.12.52. PubMed DOI PMC

Sun X, Roudi R, Dai T, et al. Immune-related adverse events associated with programmed cell death protein-1 and programmed cell death ligand 1 inhibitors for non-small cell lung cancer: a PRISMA systematic review and meta-analysis. BMC Cancer. 2019;19. doi:10.1186/s12885-019-5701-6. PubMed DOI PMC

Cortot A, Le X, Smit E, et al. Safety of MET tyrosine kinase inhibitors in patients with MET exon 14 skipping non-small cell lung cancer: A clinical review [published online ahead of print, 2022 Feb 4]. Clin Lung Cancer. 2022;1525–7304(22) 00013–4. doi:10.1016/J.CLLC.2022.01.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...