Some New Aspects of Genetic Variability in Patients with Cutaneous T-Cell Lymphoma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36553668
PubMed Central
PMC9778129
DOI
10.3390/genes13122401
PII: genes13122401
Knihovny.cz E-zdroje
- Klíčová slova
- CTCL, mycosis fungoides, polymorphism-MDR1, skin T-cell lymphoma,
- MeSH
- dospělí MeSH
- genotyp MeSH
- kožní T-buněčný lymfom * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory kůže * genetika patologie MeSH
- polymorfismus genetický MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIM: Cutaneous T-cell lymphoma (CTCL) is a group of T-cell malignancies that develop in the skin. Though studied intensively, the etiology and pathogenesis of CTCL remain elusive. This study evaluated the survival of CTCL patients in the 1st Department of Dermatovenereology of St. Anne's University Hospital Brno. It included analysis of 19 polymorphic gene variants based on their expected involvement in CTCL severity. MATERIAL AND METHODS: 75 patients with CTCL, evaluated and treated at the 1st Department of Dermatovenereology of St. Anne´s University Hospital Brno, Faculty of Medicine, Masaryk University, were recruited for the study over the last 28 years (44 men and 31 women, average age 58 years, range 20-82 years). All patients were genotyped for 19 chosen gene polymorphisms by the conventional PCR method with restriction analysis. A multivariate Cox regression model was calculated to reveal genetic polymorphisms and other risk factors for survival. RESULTS: The model identified MDR Ex21 2677 (rs2032582) as a significant genetic factor influencing the survival of the patients, with the T-allele playing a protective role. A multivariate stepwise Cox regression model confirmed the following as significant independent risk factors for overall survival: increased age at admission, clinical staging of the tumor, and male sex. CONCLUSION: We showed that the TT genotype at position 2677 of the MDR1 gene exhibited statistically significant longer survival in CTCL patients. As such, the TT genotype of MDR1 confers a significant advantage for the CTCL patients who respond to treatment.
Zobrazit více v PubMed
Willemze R., Cerroni L., Kempf W., Berti E., Facchetti F., Swerdlow S.H., Jaffe E.S. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019;133:1703–1714. doi: 10.1182/blood-2018-11-881268. PubMed DOI PMC
Stadler R., Stranzenbach R. Molecular pathogenesis of cutaneous lymphomas. Exp. Dermatol. 2018;27:1078–1083. doi: 10.1111/exd.13701. PubMed DOI
Olsen E.A. Evaluation, Diagnosis, and Staging of Cutaneous Lymphoma. Dermatol. Clin. 2015;33:643–654. doi: 10.1016/j.det.2015.06.001. PubMed DOI
Agar N.S., Wedgeworth E., Crichton S., Mitchell T.J., Cox M., Ferreira S., Robson A., Calonje E., Stefanato C.M., Wain E.M., et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: Validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J. Clin. Oncol. 2010;28:4730–4739. doi: 10.1200/JCO.2009.27.7665. PubMed DOI
Bradford A., Kunik M.E., Schulz P., Williams S.P., Singh H. Missed and delayed diagnosis of dementia in primary care: Prevalence and contributing factors. Alzheimer Dis. Assoc. Disord. 2009;23:306–314. doi: 10.1097/WAD.0b013e3181a6bebc. PubMed DOI PMC
Wong H.K. Novel biomarkers, dysregulated epigenetics, and therapy in cutaneous T-cell lymphoma. Discov. Med. 2013;16:71–78. PubMed
Wong H.K., Mishra A., Hake T., Porcu P. Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome) Br. J. Haematol. 2011;155:150–166. doi: 10.1111/j.1365-2141.2011.08852.x. PubMed DOI PMC
Girardi M., Heald P.W., Wilson L.D. The pathogenesis of mycosis fungoides. N. Engl. J. Med. 2004;350:1978–1988. doi: 10.1056/NEJMra032810. PubMed DOI
Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002;3:991–998. doi: 10.1038/ni1102-991. PubMed DOI
Dunn G.P., Koebel C.M., Schreiber R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006;6:836–848. doi: 10.1038/nri1961. PubMed DOI
Dummer R., Geertsen R., Ludwig E., Niederer E., Burg G. Sézary syndrome, T-helper 2 cytokines and accessory factor-1 (AF-1) Leuk. Lymphoma. 1998;28:515–522. doi: 10.3109/10428199809058359. PubMed DOI
Ni X., Hazarika P., Zhang C., Talpur R., Duvic M. Fas ligand expression by neoplastic T lymphocytes mediates elimination of CD8+ cytotoxic T lymphocytes in mycosis fungoides: A potential mechanism of tumor immune escape? Clin. Cancer Res. 2001;7:2682–2692. PubMed
Gantchev J., Martínez Villarreal A., Xie P., Lefrançois P., Gunn S., Netchiporouk E., Sasseville D., Litvinov I.V. The Ectopic Expression of Meiosis Regulatory Genes in Cutaneous T-Cell Lymphomas (CTCL) Front. Oncol. 2019;31:429. doi: 10.3389/fonc.2019.00429. PubMed DOI PMC
Wong H.K., Tsokos G.C. Fas (CD95) ligation inhibits activation of NF-kappa B by targeting p65-Rel A in a caspase-dependent manner. Clin. Immunol. 2006;121:47–53. doi: 10.1016/j.clim.2006.04.572. PubMed DOI
Wu J., Siddiqui J., Nihal M., Vonderheid E.C., Wood G.S. Structural alterations of the FAS gene in cutaneous T-cell lymphoma (CTCL) Arch. Biochem. Biophys. 2011;508:185–191. doi: 10.1016/j.abb.2010.10.020. PubMed DOI PMC
Vasku A., Vasku J.B., Necas M., Vasku V. Matrix metalloproteinase-2 promoter genotype as a marker of cutaneous T-cell lymphoma early stage. J. Biomed. Biotechnol. 2010;2010:805907. doi: 10.1155/2010/805907. PubMed DOI PMC
Choi J., Goh G., Walradt T., Hong B.S., Bunick C.G., Chen K., Bjornson R.D., Maman Y., Wang T., Tordoff J., et al. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 2015;47:1011–1019. doi: 10.1038/ng.3356. PubMed DOI PMC
Motamedi M., Xiao M.Z.X., Iyer A., Gniadecki R. Patterns of Gene Expression in Cutaneous T-Cell Lymphoma: Systematic Review of Transcriptomic Studies in Mycosis Fungoides. Cells. 2021;10:1409. doi: 10.3390/cells10061409. PubMed DOI PMC
Gilson D., Whittaker S.J., Child F.J., Scarisbrick J., Illidge T.M., Parry E.J., Mohd Mustapa M.F., Exton L.S., Kanfer E., Rezvani K., et al. British Association of Dermatologists and U.K. Cutaneous Lymphoma Group guidelines for the management of primary cutaneous lymphomas 2018. Br. J. Dermatol. 2019;180:496–526. doi: 10.1111/bjd.17240. PubMed DOI
Kempf W., Zimmermann A.K., Mitteldorf C. Cutaneous lymphomas-An update 2019. Hematol. Oncol. 2019;37((Suppl. S1)):43–47. doi: 10.1002/hon.2584. PubMed DOI
Kempf W., Mitteldorf C. Cutaneous T-cell lymphomas-An update 2021. Hematol. Oncol. 2021;39((Suppl. S1)):46–51. doi: 10.1002/hon.2850. PubMed DOI
Gaunt T.R., Rodriguez S., Zapata C., Day I.N. MIDAS: Software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinform. 2006;7:227. doi: 10.1186/1471-2105-7-227. PubMed DOI PMC
Ambudkar S.V., Kimchi-Sarfaty C., Sauna Z.E., Gottesman M.M. P-glycoprotein: From genomics to mechanism. Oncogene. 2003;22:7468–7485. doi: 10.1038/sj.onc.1206948. PubMed DOI
Silva R., Vilas-Boas V., Carmo H., Dinis-Oliveira R.J., Carvalho F., de Lourdes B.M., Remião F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther. 2015;149:1–123. doi: 10.1016/j.pharmthera.2014.11.013. PubMed DOI
Henrique R., Oliveira A.I., Costa V.L., Baptista T., Martins A.T., Morais A., Oliveira J., Jerónimo C. Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer. BMC Genom. 2013;14:898. doi: 10.1186/1471-2164-14-898. PubMed DOI PMC
Jin S., Scotto K.W. Transcriptional Regulation of the MDR1 Gene by Histone Acetyltransferase and Deacetylase Is Mediated by NF-Y. Mol. Cell. Biol. 1998;18:4377–4384. doi: 10.1128/MCB.18.7.4377. PubMed DOI PMC
Tiwari A.K., Sodani K., Dai C.L., Ashby C.R., Jr., Chen Z.S. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr. Pharm. Biotechnol. 2011;12:570–594. doi: 10.2174/138920111795164048. PubMed DOI
Fardel O., Lecureur V., Guillouzo A. The P-glycoprotein multidrug transporter. Gen. Pharmacol. 1996;27:1283–1291. doi: 10.1016/S0306-3623(96)00081-X. PubMed DOI
Schinkel A.H., Wagenaar E., Mol C.A., Van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 1996;97:2517–2524. doi: 10.1172/JCI118699. PubMed DOI PMC
Lankas G.R., Wise L.D., Cartwright M.E., Pippert T., Umbenhauer D.R. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod. Toxicol. 1998;12:457–463. doi: 10.1016/S0890-6238(98)00027-6. PubMed DOI
Zhou S.-F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38:802–832. doi: 10.1080/00498250701867889. PubMed DOI
Skazik C., Wenzel J., Marquardt Y., Kim A., Merk H.F., Bickers D.R., Baron J.M. P-glycoprotein (ABCB1) expression in human skin is mainly restricted to dermal components. Exp. Dermatol. 2011;20:450–452. doi: 10.1111/j.1600-0625.2010.01237.x. PubMed DOI
Osman-Ponchet H., Boulai A., Kouidhi M., Sevin K., Alriquet M., Gaborit A., Bertino B., Comby P., Ruty B. Characterization of ABC transporters in human skin. Drug Metab. Drug Interact. 2014;29:91–100. doi: 10.1515/dmdi-2013-0042. PubMed DOI
Weng H.J., Tsai T.F. ABCB1 in dermatology: Roles in skin diseases and their treatment. J. Mol. Med. 2021;99:1527–1538. doi: 10.1007/s00109-021-02105-y. PubMed DOI PMC
Tang K., Wong L.P., Lee E.J., Chong S.S., Lee C.G. Genomic evidence for recent positive selection at the human MDR1 gene locus. Hum. Mol. Genet. 2004;13:783–797. doi: 10.1093/hmg/ddh099. PubMed DOI
Lee C.G., Pastan I., Gottesman M.M. Retroviral transfer of human MDR1 gene into human T lymphocytes. Methods Enzymol. 1998;292:557–572. PubMed
Lee C.G., Gottesman M.M., Cardarelli C.O., Ramachandra M., Jeang K.T., Ambudkar S.V., Pastan I., Dey S. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry. 1998;37:3594–3601. doi: 10.1021/bi972709x. PubMed DOI
Schwab M., Eichelbaum M., Fromm M.F. Genetic polymorphisms of the human MDR1 drug transporter. Annu. Rev. Pharmacol. Toxicol. 2003;43:285–307. doi: 10.1146/annurev.pharmtox.43.100901.140233. PubMed DOI
Comerford K.M., Wallace T.J., Karhausen J., Louis N.A., Montalto M.C., Colgan S.P. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62:3387–3394. PubMed
Brambila-Tapia A.J.-L. MDR1 (ABCB1) polymorphisms: Functional effects and clinical implications. Rev. Investig. Clin. 2013;65:445–454. PubMed
Kim H.N., Kim N.Y., Yu L., Kim Y.K., Lee I.K., Yang D.H., Lee J.J., Shin M.H., Park K.S., Choi J.S., et al. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma. Int. J. Mol. Sci. 2014;15:6703–6716. doi: 10.3390/ijms15046703. PubMed DOI PMC
Salama N.N., Yang Z., Bui T., Ho R.J.Y. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J. Pharm. Sci. 2006;95:2293–2308. doi: 10.1002/jps.20717. PubMed DOI
Morita N., Yasumori T., Nakayama K. Human MDR1 polymorphism: G2677T/A and C3435T have no effect on MDR1 transport activities. Biochem. Pharmacol. 2003;65:1843–1852. doi: 10.1016/S0006-2952(03)00178-3. PubMed DOI
Kimch i-Sarfaty C., Oh J.M., Kim I.W., Sauna Z.E., Calcagno A.M., Ambudkar S.V., Gottesman M.M. A “silent “ polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315:525–528. doi: 10.1126/science.1135308. PubMed DOI
Hemauer S.J., Nanovskaya T.N., Abdel-Rahman S.Z., Patrikeeva S.L., Hankins G.D., Ahmed M.S. Modulation of human placental P-glycoprotein expression and activity by MDR1 gene polymorphisms. Biochem. Pharmacol. 2010;79:921–925. doi: 10.1016/j.bcp.2009.10.026. PubMed DOI PMC
Meissner K., Jedlitschky G., Meyer zu Schwabedissen H., Dazert P., Eckel L., Vogelgesang S., Warzok R.W., Böhm M., Lehmann C., Wendt M., et al. Modulation of multidrug resistance P-glycoprotein 1 (ABCB1) expression in human heart by hereditary polymorphisms. Pharmacogenetics. 2004;14:381–385. doi: 10.1097/00008571-200406000-00007. PubMed DOI
Pulitzer M. Cutaneous T-cell Lymphoma. Clin. Lab. Med. 2017;37:527–546. doi: 10.1016/j.cll.2017.06.006. PubMed DOI PMC
Hodak E., Amitay-Laish I. Mycosis fungoides: A great imitator. Clin. Dermatol. 2019;37:255–267. doi: 10.1016/j.clindermatol.2019.01.004. PubMed DOI
Droździk M., Stefankiewicz J., Kurzawa R., Górnik W., Baczkowski T., Kurzawski M. Association of the MDR1 (ABCB1) gene 3435C>T polymorphism with male infertility. Pharmacol. Rep. 2009;61:690–696. doi: 10.1016/S1734-1140(09)70121-5. PubMed DOI
Kamijo H., Miyagaki T. Mycosis Fungoides and Sézary Syndrome: Updates and Review of Current Therapy. Curr. Treat. Options Oncol. 2021;22:10. doi: 10.1007/s11864-020-00809-w. PubMed DOI