Some New Aspects of Genetic Variability in Patients with Cutaneous T-Cell Lymphoma

. 2022 Dec 18 ; 13 (12) : . [epub] 20221218

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36553668

AIM: Cutaneous T-cell lymphoma (CTCL) is a group of T-cell malignancies that develop in the skin. Though studied intensively, the etiology and pathogenesis of CTCL remain elusive. This study evaluated the survival of CTCL patients in the 1st Department of Dermatovenereology of St. Anne's University Hospital Brno. It included analysis of 19 polymorphic gene variants based on their expected involvement in CTCL severity. MATERIAL AND METHODS: 75 patients with CTCL, evaluated and treated at the 1st Department of Dermatovenereology of St. Anne´s University Hospital Brno, Faculty of Medicine, Masaryk University, were recruited for the study over the last 28 years (44 men and 31 women, average age 58 years, range 20-82 years). All patients were genotyped for 19 chosen gene polymorphisms by the conventional PCR method with restriction analysis. A multivariate Cox regression model was calculated to reveal genetic polymorphisms and other risk factors for survival. RESULTS: The model identified MDR Ex21 2677 (rs2032582) as a significant genetic factor influencing the survival of the patients, with the T-allele playing a protective role. A multivariate stepwise Cox regression model confirmed the following as significant independent risk factors for overall survival: increased age at admission, clinical staging of the tumor, and male sex. CONCLUSION: We showed that the TT genotype at position 2677 of the MDR1 gene exhibited statistically significant longer survival in CTCL patients. As such, the TT genotype of MDR1 confers a significant advantage for the CTCL patients who respond to treatment.

Zobrazit více v PubMed

Willemze R., Cerroni L., Kempf W., Berti E., Facchetti F., Swerdlow S.H., Jaffe E.S. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019;133:1703–1714. doi: 10.1182/blood-2018-11-881268. PubMed DOI PMC

Stadler R., Stranzenbach R. Molecular pathogenesis of cutaneous lymphomas. Exp. Dermatol. 2018;27:1078–1083. doi: 10.1111/exd.13701. PubMed DOI

Olsen E.A. Evaluation, Diagnosis, and Staging of Cutaneous Lymphoma. Dermatol. Clin. 2015;33:643–654. doi: 10.1016/j.det.2015.06.001. PubMed DOI

Agar N.S., Wedgeworth E., Crichton S., Mitchell T.J., Cox M., Ferreira S., Robson A., Calonje E., Stefanato C.M., Wain E.M., et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: Validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J. Clin. Oncol. 2010;28:4730–4739. doi: 10.1200/JCO.2009.27.7665. PubMed DOI

Bradford A., Kunik M.E., Schulz P., Williams S.P., Singh H. Missed and delayed diagnosis of dementia in primary care: Prevalence and contributing factors. Alzheimer Dis. Assoc. Disord. 2009;23:306–314. doi: 10.1097/WAD.0b013e3181a6bebc. PubMed DOI PMC

Wong H.K. Novel biomarkers, dysregulated epigenetics, and therapy in cutaneous T-cell lymphoma. Discov. Med. 2013;16:71–78. PubMed

Wong H.K., Mishra A., Hake T., Porcu P. Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome) Br. J. Haematol. 2011;155:150–166. doi: 10.1111/j.1365-2141.2011.08852.x. PubMed DOI PMC

Girardi M., Heald P.W., Wilson L.D. The pathogenesis of mycosis fungoides. N. Engl. J. Med. 2004;350:1978–1988. doi: 10.1056/NEJMra032810. PubMed DOI

Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002;3:991–998. doi: 10.1038/ni1102-991. PubMed DOI

Dunn G.P., Koebel C.M., Schreiber R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006;6:836–848. doi: 10.1038/nri1961. PubMed DOI

Dummer R., Geertsen R., Ludwig E., Niederer E., Burg G. Sézary syndrome, T-helper 2 cytokines and accessory factor-1 (AF-1) Leuk. Lymphoma. 1998;28:515–522. doi: 10.3109/10428199809058359. PubMed DOI

Ni X., Hazarika P., Zhang C., Talpur R., Duvic M. Fas ligand expression by neoplastic T lymphocytes mediates elimination of CD8+ cytotoxic T lymphocytes in mycosis fungoides: A potential mechanism of tumor immune escape? Clin. Cancer Res. 2001;7:2682–2692. PubMed

Gantchev J., Martínez Villarreal A., Xie P., Lefrançois P., Gunn S., Netchiporouk E., Sasseville D., Litvinov I.V. The Ectopic Expression of Meiosis Regulatory Genes in Cutaneous T-Cell Lymphomas (CTCL) Front. Oncol. 2019;31:429. doi: 10.3389/fonc.2019.00429. PubMed DOI PMC

Wong H.K., Tsokos G.C. Fas (CD95) ligation inhibits activation of NF-kappa B by targeting p65-Rel A in a caspase-dependent manner. Clin. Immunol. 2006;121:47–53. doi: 10.1016/j.clim.2006.04.572. PubMed DOI

Wu J., Siddiqui J., Nihal M., Vonderheid E.C., Wood G.S. Structural alterations of the FAS gene in cutaneous T-cell lymphoma (CTCL) Arch. Biochem. Biophys. 2011;508:185–191. doi: 10.1016/j.abb.2010.10.020. PubMed DOI PMC

Vasku A., Vasku J.B., Necas M., Vasku V. Matrix metalloproteinase-2 promoter genotype as a marker of cutaneous T-cell lymphoma early stage. J. Biomed. Biotechnol. 2010;2010:805907. doi: 10.1155/2010/805907. PubMed DOI PMC

Choi J., Goh G., Walradt T., Hong B.S., Bunick C.G., Chen K., Bjornson R.D., Maman Y., Wang T., Tordoff J., et al. Genomic landscape of cutaneous T cell lymphoma. Nat. Genet. 2015;47:1011–1019. doi: 10.1038/ng.3356. PubMed DOI PMC

Motamedi M., Xiao M.Z.X., Iyer A., Gniadecki R. Patterns of Gene Expression in Cutaneous T-Cell Lymphoma: Systematic Review of Transcriptomic Studies in Mycosis Fungoides. Cells. 2021;10:1409. doi: 10.3390/cells10061409. PubMed DOI PMC

Gilson D., Whittaker S.J., Child F.J., Scarisbrick J., Illidge T.M., Parry E.J., Mohd Mustapa M.F., Exton L.S., Kanfer E., Rezvani K., et al. British Association of Dermatologists and U.K. Cutaneous Lymphoma Group guidelines for the management of primary cutaneous lymphomas 2018. Br. J. Dermatol. 2019;180:496–526. doi: 10.1111/bjd.17240. PubMed DOI

Kempf W., Zimmermann A.K., Mitteldorf C. Cutaneous lymphomas-An update 2019. Hematol. Oncol. 2019;37((Suppl. S1)):43–47. doi: 10.1002/hon.2584. PubMed DOI

Kempf W., Mitteldorf C. Cutaneous T-cell lymphomas-An update 2021. Hematol. Oncol. 2021;39((Suppl. S1)):46–51. doi: 10.1002/hon.2850. PubMed DOI

Gaunt T.R., Rodriguez S., Zapata C., Day I.N. MIDAS: Software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinform. 2006;7:227. doi: 10.1186/1471-2105-7-227. PubMed DOI PMC

Ambudkar S.V., Kimchi-Sarfaty C., Sauna Z.E., Gottesman M.M. P-glycoprotein: From genomics to mechanism. Oncogene. 2003;22:7468–7485. doi: 10.1038/sj.onc.1206948. PubMed DOI

Silva R., Vilas-Boas V., Carmo H., Dinis-Oliveira R.J., Carvalho F., de Lourdes B.M., Remião F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther. 2015;149:1–123. doi: 10.1016/j.pharmthera.2014.11.013. PubMed DOI

Henrique R., Oliveira A.I., Costa V.L., Baptista T., Martins A.T., Morais A., Oliveira J., Jerónimo C. Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer. BMC Genom. 2013;14:898. doi: 10.1186/1471-2164-14-898. PubMed DOI PMC

Jin S., Scotto K.W. Transcriptional Regulation of the MDR1 Gene by Histone Acetyltransferase and Deacetylase Is Mediated by NF-Y. Mol. Cell. Biol. 1998;18:4377–4384. doi: 10.1128/MCB.18.7.4377. PubMed DOI PMC

Tiwari A.K., Sodani K., Dai C.L., Ashby C.R., Jr., Chen Z.S. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr. Pharm. Biotechnol. 2011;12:570–594. doi: 10.2174/138920111795164048. PubMed DOI

Fardel O., Lecureur V., Guillouzo A. The P-glycoprotein multidrug transporter. Gen. Pharmacol. 1996;27:1283–1291. doi: 10.1016/S0306-3623(96)00081-X. PubMed DOI

Schinkel A.H., Wagenaar E., Mol C.A., Van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 1996;97:2517–2524. doi: 10.1172/JCI118699. PubMed DOI PMC

Lankas G.R., Wise L.D., Cartwright M.E., Pippert T., Umbenhauer D.R. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod. Toxicol. 1998;12:457–463. doi: 10.1016/S0890-6238(98)00027-6. PubMed DOI

Zhou S.-F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38:802–832. doi: 10.1080/00498250701867889. PubMed DOI

Skazik C., Wenzel J., Marquardt Y., Kim A., Merk H.F., Bickers D.R., Baron J.M. P-glycoprotein (ABCB1) expression in human skin is mainly restricted to dermal components. Exp. Dermatol. 2011;20:450–452. doi: 10.1111/j.1600-0625.2010.01237.x. PubMed DOI

Osman-Ponchet H., Boulai A., Kouidhi M., Sevin K., Alriquet M., Gaborit A., Bertino B., Comby P., Ruty B. Characterization of ABC transporters in human skin. Drug Metab. Drug Interact. 2014;29:91–100. doi: 10.1515/dmdi-2013-0042. PubMed DOI

Weng H.J., Tsai T.F. ABCB1 in dermatology: Roles in skin diseases and their treatment. J. Mol. Med. 2021;99:1527–1538. doi: 10.1007/s00109-021-02105-y. PubMed DOI PMC

Tang K., Wong L.P., Lee E.J., Chong S.S., Lee C.G. Genomic evidence for recent positive selection at the human MDR1 gene locus. Hum. Mol. Genet. 2004;13:783–797. doi: 10.1093/hmg/ddh099. PubMed DOI

Lee C.G., Pastan I., Gottesman M.M. Retroviral transfer of human MDR1 gene into human T lymphocytes. Methods Enzymol. 1998;292:557–572. PubMed

Lee C.G., Gottesman M.M., Cardarelli C.O., Ramachandra M., Jeang K.T., Ambudkar S.V., Pastan I., Dey S. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry. 1998;37:3594–3601. doi: 10.1021/bi972709x. PubMed DOI

Schwab M., Eichelbaum M., Fromm M.F. Genetic polymorphisms of the human MDR1 drug transporter. Annu. Rev. Pharmacol. Toxicol. 2003;43:285–307. doi: 10.1146/annurev.pharmtox.43.100901.140233. PubMed DOI

Comerford K.M., Wallace T.J., Karhausen J., Louis N.A., Montalto M.C., Colgan S.P. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62:3387–3394. PubMed

Brambila-Tapia A.J.-L. MDR1 (ABCB1) polymorphisms: Functional effects and clinical implications. Rev. Investig. Clin. 2013;65:445–454. PubMed

Kim H.N., Kim N.Y., Yu L., Kim Y.K., Lee I.K., Yang D.H., Lee J.J., Shin M.H., Park K.S., Choi J.S., et al. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma. Int. J. Mol. Sci. 2014;15:6703–6716. doi: 10.3390/ijms15046703. PubMed DOI PMC

Salama N.N., Yang Z., Bui T., Ho R.J.Y. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J. Pharm. Sci. 2006;95:2293–2308. doi: 10.1002/jps.20717. PubMed DOI

Morita N., Yasumori T., Nakayama K. Human MDR1 polymorphism: G2677T/A and C3435T have no effect on MDR1 transport activities. Biochem. Pharmacol. 2003;65:1843–1852. doi: 10.1016/S0006-2952(03)00178-3. PubMed DOI

Kimch i-Sarfaty C., Oh J.M., Kim I.W., Sauna Z.E., Calcagno A.M., Ambudkar S.V., Gottesman M.M. A “silent “ polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315:525–528. doi: 10.1126/science.1135308. PubMed DOI

Hemauer S.J., Nanovskaya T.N., Abdel-Rahman S.Z., Patrikeeva S.L., Hankins G.D., Ahmed M.S. Modulation of human placental P-glycoprotein expression and activity by MDR1 gene polymorphisms. Biochem. Pharmacol. 2010;79:921–925. doi: 10.1016/j.bcp.2009.10.026. PubMed DOI PMC

Meissner K., Jedlitschky G., Meyer zu Schwabedissen H., Dazert P., Eckel L., Vogelgesang S., Warzok R.W., Böhm M., Lehmann C., Wendt M., et al. Modulation of multidrug resistance P-glycoprotein 1 (ABCB1) expression in human heart by hereditary polymorphisms. Pharmacogenetics. 2004;14:381–385. doi: 10.1097/00008571-200406000-00007. PubMed DOI

Pulitzer M. Cutaneous T-cell Lymphoma. Clin. Lab. Med. 2017;37:527–546. doi: 10.1016/j.cll.2017.06.006. PubMed DOI PMC

Hodak E., Amitay-Laish I. Mycosis fungoides: A great imitator. Clin. Dermatol. 2019;37:255–267. doi: 10.1016/j.clindermatol.2019.01.004. PubMed DOI

Droździk M., Stefankiewicz J., Kurzawa R., Górnik W., Baczkowski T., Kurzawski M. Association of the MDR1 (ABCB1) gene 3435C>T polymorphism with male infertility. Pharmacol. Rep. 2009;61:690–696. doi: 10.1016/S1734-1140(09)70121-5. PubMed DOI

Kamijo H., Miyagaki T. Mycosis Fungoides and Sézary Syndrome: Updates and Review of Current Therapy. Curr. Treat. Options Oncol. 2021;22:10. doi: 10.1007/s11864-020-00809-w. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...